• Aucun résultat trouvé

We recall here the main definitions and results used in the Coquel-LeFloch methodology [10].

First, we need to define measure-valued solutions which extend the notion of weak solution. Instead of functions inL(R×]0, T[), we consider Young measures onR×]0, T[ that are weak-⋆ bounded applications

ν:R×]0, T[−→νx,t ∈Prob(R) such that for all functionsa∈C(R;R)

x,t, ai= Z

R

a(λ)dνx,t(λ), a.e.(x, t)∈R×]0, T[

Weak-⋆ boundedness means that (x, t) 7→ hνx,t, ai is in L(R×]0, T[). Moreover, it is assumed that all measures under consideration are supported in a compact set K ⊂ R, that is,

x,t, ai= 0 (A.1)

for all continuous functionsavanishing onK.

0.001 0.01 0.1

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

EL1

ε uni 2

mr 2 uni 4 mr 4 uni 8 mr 8

Figure 11: Relative L1-error between numerical and exact solution for the discontinuous initial condition (6.2). Multiresolution on 8 levels. 2, 4 and 8 cells on the coarsest level

Definition A.1. A Young measure ν:R×]0, T[−→Prob(R) is a measure-valued solution of (2.1) if it satisfies

thν, Idi+∂xhν, fi= 0 (A.2) in the usual sense of distributions.

We remark that if u ∈ L(R×]0, T[) is a weak solution of (2.1), then the Young measure defined by

νx,tu(x,t) (A.3)

is a measure-valued solution of (2.1). As in the weak sense, an entropy condition is necessary to ensure uniqueness of a measure-valued solution.

Definition A.2. A Young measure ν is consistent with the entropy inequality (2.2) asso-ciated with(η, q) if it satisfies

tx,t, ηi+∂xx,t, qi ≤0 (A.4) in the sense of distributions. A measure-valued solution ν is an entropy measure-valued solution if it satisfies (A.4) for all entropy/entropy-flux pair (η, q).

By extension of Kruzkov’s uniqueness result [17], DiPerna’s theorem asserts that an entropy measure-valued solution is unique inL.

Theorem A.1. (DiPerna). Let u0 ∈L(R). Suppose that ν :R×]0, T[−→ Prob(R) is a Young measure satisfying

1. ν is a measure-valued solution of (2.1),

2. ν is consistent with all the entropy inequalities (A.4), 3. for all compact set K in R

limt→0 t>0

Z t

0

Z

K

x,s,|Id−u0(x)|idxds= 0. (A.5)

1e-06 1e-05 0.0001 0.001 0.01 0.1

0.001 0.01 0.1 1

ε

∆x0 disc

x1.01 smooth x1.1

Figure 12: Value of thresholdε for which the multiresolution error is of the order of the discretization error

If u∈L(R×]0, T[) is the unique weak entropy solution of (2.1), then

νx,tu(x,t), a.e.(x, t)∈R×]0, T[ (A.6) The following theorem provides a sufficient condition to ensure condition (A.5) of Theorem A.1

Theorem A.2. (DiPerna [13]). Let u0∈L(R). Suppose that ν :R×]0, T[−→ Prob(R) is a Young measure assuming u0 in the weak sense, i.e., for all ϕ∈C1

0(R;R), limt→0

t>0

1 t

Z t

0

Z

R

x,s, Idiϕ(x)dxds= Z

R

u0(x)ϕ(x)dx. (A.7)

Furthermore, assume that for allϕ∈C1

0(R;R)≥0and for at least one continuous strictly convex function η:R→R,

lim

t>0

1 t

Z t

0

Z

R

x,s, ηiϕ(x)dxds≤ Z

R

η(u0(x))ϕ(x)dx. (A.8) Then,ν assumes the initial condition in L1loc strongly (condition A.5 of Theorem A.1).

References

[1] N. Andrianov, F. Coquel, M. Postel, and Q. H. Tran. A linearly semi-implicit AMR method for 1-D gas-liquid flows. In A. A. Mammoli and C. A. Brebbia, editors, Proceedings of the 3rd International Conference on Computational Methods in Multi-phase Flow, Portland, Maine, October 2005, number III in Computational Methods in Multiphase Flows, pages 295–304, Berlin, 2005. WIT Press.

[2] N. Andrianov, F. Coquel, M. Postel, and Q. H. Tran. A relaxation multiresolution scheme for accelerating realistic two-phase flows calculations in pipelines. Int. J.

Numer. Meth. Fluids, 54(2):207–236, 2006.

[3] Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53(3):484–512, 1984.

[4] F. Bramkamp, P. Lamby, and S. M¨uller. An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys., 197(2):460–490, 2004.

[5] A. Cohen. Wavelet methods in numerical analysis. In P. G. Ciarlet and J. L. Lions, editors,Handbook of Numerical Analysis, volume VII, pages 417–711. Elsevier, North-Holland, 2000.

[6] A. Cohen, S. M. Kaber, S. M¨uller, and M. Postel. Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp., 72(241):183–225, 2003.

[7] F. Coquel, Q. L. Nguyen, M. Postel, and Q. H. Tran. Local time stepping applied to implicit-explicit methods for hyperbolic systems. Multiscale Model. Simul., 8(2):540–

570, 2010.

[8] F. Coquel, M. Postel, N. Poussineau, and Q. H. Tran. Multiresolution technique and explicit-implicit scheme for multicomponent flows. J. Numer. Math., 14(3):187–216, 2006.

[9] Fr´ed´eric Coquel and Philippe LeFloch. Convergence of finite difference schemes for conservation laws in several space variables: the corrected antidiffusive flux approach.

Math. Comp., 57(195):169–210, 1991.

[10] Fr´ed´eric Coquel and Philippe LeFloch. Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory. SIAM J. Numer.

Anal., 30(3):675–700, 1993.

[11] C[onstantine] M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2000.

[12] Ronald J. DiPerna. Convergence of approximate solutions to conservation laws.Arch.

Rational Mech. Anal., 82(1):27–70, 1983.

[13] Ronald J. DiPerna. Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal., 88(3):223–270, 1985.

[14] Margarete O. Domingues, Sˆonia M. Gomes, Olivier Roussel, and Kai Schneider. An adaptive multiresolution scheme with local time stepping for evolutionary PDEs. J.

Comput. Phys., 227(8):3758–3780, 2008.

[15] R. Eymard, T. Gallou¨et, and R. Herbin. Finite-volume methods. In P. G. Ciarlet et J. L. Lions, editor, Handbook of Numerical Analysis, volume 7, pages 715–1022.

Elsevier, Amsterdam, 2000.

[16] E[dwige] Godlewski and P[ierre] A[rnaud] Raviart. Hyperbolic Systems of Conserva-tion Laws, volume 3/4 of Math´ematiques et Applications, Soci´et´e de Math´ematiques Appliqu´ees et Industrielles. Ellipses, Paris, 1991.

[17] E[dwige] Godlewski and P[ierre] A[rnaud] Raviart. Numerical approximation of hy-perbolic systems of conservation laws, volume 118 of Applied Mathematical Sciences.

Springer, New-York, 1996.

[18] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput.

Phys., 49:357–393, 1983.

[19] A. Harten. Multiresolution algorithms for the numerical solutions of hyperbolic con-servation laws. Comm. Pure Appl. Math., 48(12):1305–1342, 1995.

[20] N. Hovhannisyan and S. M¨uller. On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies.

IMA J. Numer. Anal., 30(4):1256–1295, 2010.

[21] S. N. Kruzkov. First-order quasilinear equations in several independent variables.

Mat. USSR Sb., 10(2):217–243, 1970.

[22] P. Lamby, S. M¨uller, and Y. Stiriba. Solution of shallow water equations using fully adaptive multiscale schemes. Int. J. Numer. Meth. Fluids, 49(4):417–437, 2005.

[23] A. Y. Leroux and P. Quesseveur. Convergence of an antidiffusion Lagrange-Euler scheme for quasilinear equations. SIAM J. Numer. Anal., 21(5):985–994, 1984.

[24] Y. G. Lu.Hyperbolic Conservation Laws and the Compensated Compactness Method, volume 128 of Monographs and Surveys in Pure and Applied Mathematics. Chapman

& Hall/CRC, Boca Raton, 2003.

[25] S. M¨uller, P. Helluy, and J. Ballmann. Numerical simulation of a single bubble by compressible two-phase fluids. Int. J. Numer. Meth. Fluids, 62(6):591–631, 2010.

[26] S. M¨uller and Y. Stiriba. Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput., 30(3):493–531, 2007.

[27] S. M¨uller and Y. Stiriba. A multilevel finite-volume method with multiscale-based grid adaptation for steady compressible flows. J. Comput. Appl. Math., 227(2):223–

233, 2009. Special Issue on Emergent Applications of Fractals and Wavelets in Biology and Biomedicine.

[28] Fran¸cois Murat. Compacit´e par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci.

Fis., 5(3):489–507, 1978.

[29] S. Osher and R. Sanders. Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comp., 41(164):321–336, 1983.

[30] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn. A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys., 188(2):493–523, 2003.

[31] C. W. Shu. TVB uniformly high order schemes for conservation laws. Math. Comp., 49(179):105–121, 1987.

[32] J[oel] Smoller. Shock Waves and Reaction-Diffusion Equations, volume 258 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1994.

[33] A. Szepessy. Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comp., 53(188):527–545, 1989.

[34] L. Tartar. Compensated compactness and applications to partial differential equa-tions. In R. J. Knops, editor, Nonlinear analysis and mechanics: Heriot-Watt Sym-posium IV, volume 39 of Research Notes in Mathematics, pages 136–212. Pitman, Boston, 1979.

[35] A. I. Vol’pert. The BV space and quasilinear equations. Math. USSR Sb., 2:257–267, 1967.

Documents relatifs