• Aucun résultat trouvé

CHAPITRE 8 CONCLUSION ET RECOMMANDATIONS

8.4 Liste de contributions

Les contributions doctorales que nous revendiquons essentiellement dans cette thèse sont les suivantes :

— Nous avons étudié la possibilité de varier la technique d’injection verrouillée afin d’ac- croître la bande d’injection en fréquence. Nous avons proposé un nouveau circuit d’oscillateur LC et en anneau avec une injection double, tout en exploitant le courant et la tension des entrées à la fois.

— Nous avons conçu un bloc de conversion du signal modulé en fréquence en un signal modulé. Ce module nous a permis de combiner les avantages de deux topologies de modulation. Les résultats observés sont prometteurs. Ceci nous a donné la chance d’utiliser les architectures simples à détection d’enveloppe avec un signal modulé en fréquence pour un débit de transmission élevé.

d’un circuit de réveil nous a permis de maximiser la durée de vie des batteries ainsi d’avoir un contrôle permanent du canal RF.

— Nous avons assemblé trois designs pour réussir un émetteur-récepteur au complet. Le circuit au complet inclut un émetteur FSK. un récepteur FSK, un récepteur de réveil OOK et un synthétiseur de fréquence pour générer la fréquence porteuse. Ce système, apporte une nouvelle solution, respectant les contraintes exigées pour les circuits de communication médicales, consommant moins de 1 mW.

LISTE DES RÉFÉRENCES

[1] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, “Mi- croelectrodes, microelectronics, and implantable neural microsystems,” Proceedings of the IEEE, vol. 96, no. 7, pp. 1184–1202, 2008.

[2] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung, “Body area networks : A survey,” Mobile networks and applications, vol. 16, no. 2, pp. 171–193, 2011.

[3] A. Trigui, ASSERVISSEMENT DE L’ÉNERGIE INDUCTIVE TRANSMISE AUX IM- PLANTS ÉLECTRONIQUES. PhD thesis, École Polytechnique de Montréal, Jan. 2014. [4] I. Markit, “Flash dynamics market brief,” 2015.

[5] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rahman, and K. S. Kwak, “A comprehensive survey of wireless body area networks,” Journal of medical systems, vol. 36, no. 3, pp. 1065–1094, 2012.

[6] S. Ullah, H. Higgins, B. Shen, and K. S. Kwak, “On the implant communication and MAC protocols for WBAN,” International Journal of Communication Systems, vol. 23, no. 8, pp. 982–999, 2010.

[7] L.-F. Tanguay, Y. Savaria, and M. Sawan, “A 640 µw frequency synthesizer dedica- ted to implantable medical microsystems in 90-nm CMOS,” in International NEWCAS Conference (NEWCAS), pp. 369–372, IEEE, 2010.

[8] X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, and X. Chen, “An energy-efficient ASIC for wireless body sensor networks in medical applications,” Transactions on Bio- medical Circuits and Systems, vol. 4, no. 1, pp. 11–18, 2010.

[9] A. Hierlemann, O. Brand, C. Hagleitner, and H. Baltes, “Microfabrication techniques for chemical/biosensors,” Proceedings of the IEEE, vol. 91, no. 6, pp. 839–863, 2003. [10] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on wireless

body area networks,” Wireless Networks, vol. 17, no. 1, pp. 1–18, 2011.

[11] C. Krafft and V. Sergo, “Biomedical applications of raman and infrared spectroscopy to diagnose tissues,” Journal of Spectroscopy, vol. 20, no. 5-6, pp. 195–218, 2006.

[12] H.-E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and phase Doppler measurement techniques. Springer Science & Business Media, 2013.

[13] F. A. Voegeli, M. J. Smale, D. M. Webber, Y. Andrade, and R. K. O’Dor, “Ultrasonic telemetry, tracking and automated monitoring technology for sharks,” in The behavior

and sensory biology of elasmobranch fishes : an anthology in memory of Donald Richard Nelson, pp. 267–282, Springer, 2001.

[14] F. Voegeli, G. Lacroix, and J. Anderson, “Development of miniature pingers for tracking atlantic salmon smolts at sea,” Hydrobiologia, vol. 371, pp. 35–46, 1998.

[15] F. Rules and Regulations, “FCC regulations for ISM band devices : 902-928 MHz,” tech. rep., International Telecommunication Union Radio communication, 2006.

[16] C. A. Balanis, Antenna theory : analysis and design. John Wiley & Sons, 2016.

[17] S. A. Schelkunoff and H. T. Friis, Antennas : theory and practice, vol. 639. Wiley New York, 1952.

[18] B. Razavi and R. Behzad, RF microelectronics, vol. 1. Prentice Hall New Jersey, 1998. [19] G. Papotto, F. Carrara, A. Finocchiaro, and G. Palmisano, “A 90nm CMOS 5 Mbps crystal-less RF-Powered transceiver for wireless sensor network nodes,” Journal of Solid- State Circuits, vol. 49, pp. 335–346, Feb 2014.

[20] P. Turcza, “Low power 2 Mbps radio telemetry system for biomedical applications,” in European Conference on Circuit Theory and Design (ECCTD), pp. 1–4, IEEE, 2013. [21] J. Bae, L. Yan, and H.-J. Yoo, “A low energy injection-locked FSK transceiver with

frequency-to-amplitude conversion for body sensor applications,” Journal of Solid-State Circuits, vol. 46, no. 4, pp. 928–937, 2011.

[22] M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, L. Huang, J. van de Molen- graft, K. Imamura, B. Busze, F. Bouwens, et al., “A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications,” IEEE transactions on biomedical circuits and systems, vol. 5, no. 6, pp. 523–534, 2011.

[23] L.-C. Liu, M.-H. Ho, and C.-Y. Wu, “A medradio-band low-energy-per-bit CMOS OOK transceiver for implantable medical devices,” in Biomedical Circuits and Systems Confe- rence (BioCAS), pp. 153–156, IEEE, 2011.

[24] M. Vidojkovic, X. Huang, X. Wang, C. Zhou, A. Ba, M. Lont, Y.-H. Liu, P. Harpe, M. Ding, B. Busze, et al., “A 0.33 nj/b IEEE 802. 15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11kb/s to 4.5 mb/s for medical applications,” in International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 170–171, IEEE, 2014.

[25] S. Masui, K. Kanda, M. Hamaminato, H. Satou, I. Ida, T. Ninomiya, V. Maja, H. Xiong- chuan, K. Nauman, P. Kathleen, and G. H. De, “Ultra-low-power wireless transceiver technology for body area network,” Transactions of Japanese Society for Medical and Biological Engineering, vol. 52, no. Supplement, pp. OS–41–OS–42, 2014.

[26] D.-G. Lee and P. P. Mercier, “A 1.65 mw pll-free psk receiver employing super- regenerative phase sampling,” in Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE, pp. 1–4, IEEE, 2015.

[27] N. M. Pletcher, Ultra-low power wake-up receivers for wireless sensor networks. Pro- Quest, 2008.

[28] M. Yiqi, G. Tongqiang, X. Xiaodong, Y. Haigang, and C. Xinxia, “A fully integrated cmos super-regenerative wake-up receiver for eeg applications,” Journal of Semiconduc- tors, vol. 37, no. 9, p. 095001, 2016.

[29] C. Salazar, A. Cathelin, A. Kaiser, and J. Rabaey, “A 2.4 ghz interferer-resilient wake- up receiver using a dual-if multi-stage n-path architecture,” IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2091–2105, 2016.

[30] J. C. Chien and A. M. Niknejad, “Oscillator-based reactance sensors with injection locking for high-throughput flow cytometry using microwave dielectric spectroscopy,” IEEE Journal of Solid-State Circuits, vol. 51, pp. 457–472, Feb 2016.

[31] T. Chalvatzis, “An injection-locked 8.5 ghz vco with decade-wide programmable locking range in sige bicmos,” in IEEE Bipolar/BiCMOS Circuits and Technology Meeting- BCTM,, pp. 101–104, Oct 2015.

[32] A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature lc oscillator : A complete portrait based on injection locking,” IEEE Journal of Solid-State Circuits,, vol. 42, no. 9, pp. 1916–1932, 2007.

[33] D.-S. Lee, J.-H. Jang, H.-G. Park, Y. Pu, K. C. Hwang, Y. Yang, M.-K. Seo, and K.-Y. Lee, “A wide-locking-range dual injection-locked frequency divider with an automatic frequency calibration loop in 65-nm cmos,” IEEE Transactions on Circuits and Systems II : Express Briefs,, vol. 62, no. 4, pp. 327–331, 2015.

[34] J. Xu, J. Hu, B. Ciftcioglu, and H. Wu, “A 4-15 GHz ring oscillator based injection- locked frequency multiplier with built-in harmonic generation,” in Proceedings of the IEEE Custom Integrated Circuits Conference, Sept 2013.

[35] X. Wang and R. Gharpurey, “Interference cancellation in broadband wireless systems utilizing phase-aligned injection-locked oscillators,” IEEE Transactions on Circuits and Systems II : Express Briefs,, vol. 55, no. 9, pp. 872–876, 2008.

[36] V. V. Kulkarni, J. Lee, J. Zhou, C. K. Ho, J. H. Cheong, W.-D. Toh, P. Li, X. Liu, and M. Je, “A reference-less injection-locked clock-recovery scheme for multilevel-signaling- based wideband BCC receivers,” IEEE Transactions on Microwave Theory and Tech- niques,, vol. 62, no. 9, pp. 1856–1866, 2014.

[37] F. O’Mahony, S. Shekhar, M. Mansuri, G. Balamurugan, J. E. Jaussi, J. Kennedy, B. Casper, D. J. Allstot, and R. Mooney, “A 27Gb/s forwarded-clock I/O receiver using an injection-locked LC-DCO in 45nm cmos,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers, 2008.

[38] M. Zgaren and M. Sawan, “A low-power dual-injection-locked rf receiver with fsk-to-ook conversion for biomedical implants,” IEEE Transactions on Circuits and Systems I : Regular Papers,, vol. 62, no. 11, pp. 2748–2758, 2015.

[39] R. Adler, “A study of locking phenomena in oscillators,” Proceedings of the IRE, vol. 34, no. 6, pp. 351–357, 1946.

[40] I. R. Chamas and S. Raman, “A comprehensive analysis of quadrature signal synthesis in cross-coupled rf vcos,” IEEE Transactions on Circuits and Systems I : Regular Papers,, vol. 54, no. 4, pp. 689–704, 2007.

[41] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz cmos LC-oscillator with quadrature outputs,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers. 42nd ISSCC,, pp. 392–393, IEEE, 1996.

[42] S. Liu, Y. Zheng, W. M. Lim, and W. Yang, “Ring oscillator based injection locked fre- quency divider using dual injection paths,” IEEE Microwave and Wireless Components Letters,, vol. 25, no. 5, pp. 322–324, 2015.

[43] S. Shekhar, G. Balamurugan, D. J. Allstot, M. Mansuri, J. E. Jaussi, R. Mooney, J. Ken- nedy, B. Casper, and F. O’Mahony, “Strong injection locking in low-lc oscillators : Mode- ling and application in a forwarded-clock I/O receiver,” IEEE Transactions on Circuits and Systems I : Regular Papers,, vol. 56, no. 8, pp. 1818–1829, 2009.

[44] M. Raj and A. Emami, “A wideband injection-locking scheme and quadrature phase generation in 65-nm cmos,” IEEE Transactions on Microwave Theory and Techniques,, vol. 62, no. 4, pp. 763–772, 2014.

[45] T.-N. Luo and Y.-J. Chen, “A 0.8-mw 55-GHz Dual-Injection-Locked CMOS frequency divider,” IEEE Transactions on Microwave Theory and Techniques,, vol. 56, pp. 620– 625, March 2008.

[46] X. Lai and J. Roychowdhury, “Analytical equations for predicting injection locking in lc and ring oscillators,” in Proceedings of the IEEE 2005 Custom Integrated Circuits Conference,, pp. 461–464, IEEE, 2005.

[47] B. Otis and J. Rabaey, Ultra-low power wireless technologies for sensor networks. Sprin- ger, 2007.

[48] R. Bashirullah, “Wireless implants,” Microwave Magazine, IEEE, vol. 11, pp. S14–S23, Dec 2010.

[49] N. Wu and Q. Zhang, “Ultra-low-power RF transceivers for WBANs in medical ap- plications,” in New Circuits and Systems Conference (NEWCAS), pp. 145–148, IEEE, 2012.

[50] J. Liu, C. Li, L. Chen, Y. Xiao, J. Wang, H. Liao, and R. Huang, “An ultra-low power 400 MHz OOK transceiver for medical implanted applications,” in Proceedings of the ESSCIRC, pp. 175–178, IEEE, 2011.

[51] V. Peiris, C. Arm, S. Bories, S. Cserveny, F. Giroud, P. Graber, S. Gyger, E. Le Roux, T. Melly, M. Moser, et al., “A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF trans- ceiver SoC in standard digital 0.18 µm CMOS,” in International Solid-State Circuits Conference (ISSCC), pp. 258–259, IEEE, 2005.

[52] X. Huang, S. Rampu, X. Wang, G. Dolmans, and H. de Groot, “A 2.4 GHz/915 MHz 51 µW wake-up receiver with offset and noise suppression,” in IEEE International Solid- State Circuits Conference (ISSCC), pp. 222–223, Feb 2010.

[53] A. Burr, “Comparison of coherent and non coherent modulation in the presence of phase noise,” Proceedings I (Communications, Speech and Vision), vol. 139, no. 2, pp. 147–155, 1992.

[54] A. E. Siegman, Lasers. Mill Valley, Calif : University Science Books, 1986.

[55] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in International Solid-State Circuits Conference (ISSCC), pp. 392–393, IEEE, 1996.

[56] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” Jour- nal of Solid-State Circuits, vol. 34, no. 6, pp. 813–821, 1999.

[57] B. Razavi, “A study of injection locking and pulling in oscillators,” Journal of Solid-State Circuits, vol. 39, pp. 1415–1424, Sept 2004.

[58] T.-N. Luo and Y.-J. Chen, “A 0.8 mW 55 GHz dual-injection-locked CMOS frequency divider,” Transactions on Microwave Theory and Techniques, vol. 56, no. 3, pp. 620–625, 2008.

[59] M. Wang, M. Zhang, X. Fan, and Y. Liu, “A power reduction technique for wideband common gate low noise amplifers,” in International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 969–972, IEEE, 2014.

[60] W. Zhuo, X. Li, S. Shekhar, S. Embabi, J. de Gyvez, D. Allstot, and E. Sanchez-Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” Transactions on Circuits and Systems II : Express Briefs, vol. 52, pp. 875–879, Dec 2005.

[61] C. Jeong, W. Qu, Y. Sun, D. Yoon, S. Han, and S. Lee, “A 1.5v 140 ua cmos ultra-low power common-gate lna,” in 2011 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 1–4, June 2011.

[62] B. van Liempd, M. Vidojkovic, M. Lont, C. Zhou, P. Harpe, D. Milosevic, and G. Dol- mans, “A 3µW fully-differential RF envelope detector for ultra-low power receivers,” in International Symposium on Circuits and Systems (ISCAS), pp. 1496–1499, IEEE, 2012. [63] E. A. Vittoz, “Weak inversion for ultra low-power and very low-voltage circuits,” in

Asian Solid-State Circuits Conference, (A-SSCC), pp. 129–132, IEEE, 2009.

[64] J.-F. Huang, W.-C. Lai, and W.-T. Lay, “Chip design of WuRx front-end and IF Gm-C bandpass filter with antenna to near infrared charging for biomedical application,” in International Symposium on Bioelectronics and Bioinformatics (ISBB), pp. 1–8, IEEE, 2014.

[65] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2001.

[66] C. A. Balanis, Antenna theory : analysis and design. John Wiley & Sons, 2012.

[67] M. Zgaren and M. Sawan, “Frequency-to-Amplitude converter based FSK receiver for Ultra-Low power transceivers,” in International New Circuits and Systems Conference (NEWCAS), pp. 1–4, June 2014.

[68] X. Huang, S. Rampu, X. Wang, G. Dolmans, and H. de Groot, “A 2.4 GHz/915 MHz 51 µW wake-up receiver with offset and noise suppression,” in International Solid-State Circuits Conference (ISSCC), pp. 222–223, IEEE, 2010.

[69] S. Moazzeni, M. Sawan, and G. Cowan, “An Ultra-Low-Power Energy-Efficient Dual- Mode Wake-Up receiver,” Transactions on Circuits and Systems I : Regular Papers, vol. PP, no. 99, pp. 1–10, 2014.

[70] A. Moradi, M. Zgaren, and M. Sawan, “A 0.084 nj/b FSK transmitter and 4.8 µw OOK receiver for ISM-band medical sensor networks,” in International New Circuits and Systems Conference (NEWCAS), pp. 1–4, June 2013.

[71] P. Maiti, S. K. Addya, B. Sahoo, and A. K. Turuk, “Energy efficient wireless body area network WBAN,” Handbook of Research on Advanced Wireless Sensor Network Applications, Protocols, and Architectures, p. 413, 2016.

[72] T. Kikuzuki, I. Ida, T. Ninomiya, M. Katoh, K. Kasai, M. Yoshida, and J. Takagi, “Realizing safe and reliable vital sings monitoring with wireless body area networks,” in Humanitarian Technology Conference (R10-HTC), pp. 330–335, IEEE, 2013.

[74] R. Bashirullah, “Wireless implants,” IEEE Microwave Magazine, vol. 11, no. 7, pp. S14– S23, 2010.

[75] G. Papotto, F. Carrara, A. Finocchiaro, and G. Palmisano, “A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes,” IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 335–346, 2014.

[76] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch, and B. Gosselin, “A single- chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants,” IEEE transactions on biomedical circuits and systems, vol. 10, no. 3, pp. 643– 653, 2016.

[77] V. De Santis and M. Feliziani, “Intra-body channel characterization of medical implant devices,” in 10th International Symposium on Electromagnetic Compatibility, pp. 816– 819, IEEE, 2011.

[78] A. Moradi and M. Sawan, “An energy-efficient high data-rate 915 MHz FSK wireless transmitter for medical applications,” Analog Integrated Circuits and Signal Processing, vol. 83, no. 1, pp. 85–94, 2015.

[79] H. Cho, H. Kim, M. Kim, J. Jang, Y. Lee, K. J. Lee, J. Bae, and H.-J. Yoo, “A 79 pj/b 80 Mb/s full-duplex transceiver and a 100 kb/s super-regenerative transceiver for body channel communication,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 310–317, 2016.

[80] A. Ba, M. Vidojkovic, K. Kanda, N. F. Kiyani, M. Lont, X. Huang, X. Wang, C. Zhou, Y.-H. Liu, M. Ding, et al., “A 0.33 nj/bit ieee802. 15.6/proprietary mics/ism wireless transceiver with scalable data rate for medical implantable applications,” IEEE journal of biomedical and health informatics, vol. 19, no. 3, pp. 920–929, 2015.

ANNEXE A ADAPTATION DES IMPÉDANCES

La problème de l’adaptation d’impédance se manifeste à chaque fois que l’on veut connec- ter deux systèmes ou circuits entre eux et transférer un maximum de puissance. Le réseau d’adaptation est un étage électrique responsable de la transformation d’impédances entre deux circuits RF, de manière à minimiser les pertes d’énergie. Le moyen le plus utilisé et le plus efficaces pour concevoir cette tache consiste en l’utilisation d’éléments passifs, comme les inductances, capacités et lignes de transmission. La méthode avec laquelle ces blocs sont disposés permet d’accomplir une transformation d’impédances déterminée. Le choix de la technique d’adaptation dépend essentiellement de l’application, de la technologie disponible et de plusieurs éléments, tels que la couverture d’impédances, les pertes d’insertion et l’occu- pation en surface. La noyau de base d’un circuit d’adaptation des impédances complexes est formé de la comninaison de deux éléments passifs, l’un en série et l’autre en parallèle [81]. Lorsque le circuit d’adaptation est constitué d’un seul noyau de base, le circuit est dit en L, alors que si l’on ajoute un deuxième bloc, on aura une architecture en 2L, en T ou en Π, comme le montre la figure A.1.

Le principe de la transmission optimale de puissance exige que le transfert de puissance ne sera maximal que si les impédances sont adaptées, cela signifie que ZL= Z0 comme le montre

la figure A.2. Sinon, ceci va causer une réflexion de l’onde émise par la source.

Figure A.2 Schéma d’une source RF connectée à une charge.

En général, lorsque la plage d’impédances que le circuit d’adaptation doit couvrir est petite et bien déterminée, des solutions simples et moins encombrante sont recommandées. Dans notre système proposé, on a opté pour une topologie LC à un seul étage d’adaptation. Dans le cas où on cherche à transformer une impédance ZS en une impédance ZP. On peut connecter

une inductance en série avec ZS suivie d’une capacité en parallèle, Figure. Les valeurs de

l’inductance et de la capacité sont donc calculées de manière à convertir ZS en ZP à une

fréquence donnée.

Documents relatifs