• Aucun résultat trouvé

La fonction endogène des siRNAs induits par feeding d'ARNdb

Si la fonction endogène de cette voie reste mystérieuse, la compréhension des mécanismes de production des siRNAs nous permet d'imaginer plusieurs raisons qui auraient contribué à la conservation de cette voie d'ARN interférence au cours de l'évolution.

L'idée générale est que les voies d'ARNi sont utiles pour la défense contre les parasites moléculaires tels que les transposons et les virus. Jusqu'à présent aucun virus n'infectant la paramécie n'a été trouvé contrairement à plusieurs protozoaires pour lesquels des virus ont été décrits (Hyman & Abedon 2012[119]). Si effectivement aucun virus n'est capable d'infecter la paramécie, on peut se demander si ce sont ses voies d'ARNi qui lui offrent une protection efficace contre les infections virales. Cependant, la plupart des virus de plantes ou d'animaux ont développé des mécanismes pour contourner ou inactiver les voies d'ARNi de l'hôte, il est donc peu probable que ce soit les voies d'ARNi de la paramécie qui empêchent à elles seules les infections virales. En ce qui concerne les transposons, il est théoriquement possible que l'ARNi empêche l'intégration de transposons qui proviendraient de la nourriture en réprimant les transcrits, cependant le code génétique de la paramécie étant différent de celui des bactéries (un seul codon stop : TGA), il est peu probable qu'un transposon bactérien puisse facilement intégrer le génome de la paramécie.

En revanche, plusieurs endosymbionts ont été décrits pour la paramécie. Par exemple l'algue verte unicellulaire Chlorella (Fujishima & Kodama 2012[120]) ou encore la bactérie

Caedibacter caryophilus affiliée aux Alphaproteobacteria (Beier et al. 2002[121]). Cette

dernière donne à son hôte la capacité de tuer ces congénères qui ne sont pas infectés par la bactérie. Par définition, un endosymbiote doit interagir avec son hôte pour un certain nombre de processus cellulaires. Il est alors possible que l'ARNi ait un rôle important à jouer dans ces relations endosymbiotiques. Certains ARN de la bactérie infectieuse (ARN ribosomaux ou même ARNm) pourraient être réprimées par les voies d'ARNi de la paramécie pour empêcher l'infection ou simplement pour limiter sa prolifération dans l'hôte. Si c'est le cas, cela suggère que des ARN seraient excrétés de la bactérie dans le cytoplasme de la paramécie pour être traités par l'ARNi puis que les siRNAs produits pourraient entrer dans la bactérie pour éteindre l'expression des ARNm. L'étude de la prolifération des endosymbionts dans des mutants déficients pour l'ARNi pourrait être particulièrement intéressante.

136

Références

138 Primary Sources

Secondary Sources

Uncategorized References

1. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant cell, 2, 279-289.

2. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N. and Stuitje, A.R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant cell, 2, 291-299.

3. Guo, S. and Kemphues, K.J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81, 611-620.

4. Baulcombe, D.C. (1996) RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant molecular biology, 32, 79-88.

5. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811.

6. Shabalina, S.A. and Koonin, E.V. (2008) Origins and evolution of eukaryotic RNA interference. Trends in ecology & evolution, 23, 578-587.

7. Gantier, M.P. and Williams, B.R. (2007) The response of mammalian cells to double-stranded RNA. Cytokine & growth factor reviews, 18, 363-371.

8. Sarkies, P. and Miska, E.A. (2013) RNAi pathways in the recognition of foreign RNA: antiviral responses and host-parasite interactions in nematodes. Biochemical Society transactions, 41, 876-880.

9. Hohn, T. and Vazquez, F. (2011) RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. Biochimica et biophysica acta, 1809, 588-600. 10. Maillard, P.V., Ciaudo, C., Marchais, A., Li, Y., Jay, F., Ding, S.W. and Voinnet, O. (2013)

Antiviral RNA interference in mammalian cells. Science, 342, 235-238.

11. Tabara, H., Grishok, A. and Mello, C.C. (1998) RNAi in C. elegans: soaking in the genome sequence. Science, 282, 430-431.

12. Tabara, H., Sarkissian, M., Kelly, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C.C. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 99, 123-132.

13. Sundaram, P., Echalier, B., Han, W., Hull, D. and Timmons, L. (2006) ATP-binding cassette transporters are required for efficient RNA interference in Caenorhabditis elegans. Mol Biol Cell, 17, 3678-3688.

14. Sundaram, P., Han, W., Cohen, N., Echalier, B., Albin, J. and Timmons, L. (2008)

Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7. Genetics, 178, 801-814.

15. Winston, W.M., Sutherlin, M., Wright, A.J., Feinberg, E.H. and Hunter, C.P. (2007)

Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 104, 10565-10570.

16. Nuez, I. and Felix, M.A. (2012) Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes. PloS one, 7, e29811.

17. Galvani, A. and Sperling, L. (2002) RNA interference by feeding in Paramecium. Trends in genetics : TIG, 18, 11-12.

139

18. Zhou, R., Mohr, S., Hannon, G.J. and Perrimon, N. (2014) Inducing RNAi in Drosophila cells by soaking with dsRNA. Cold Spring Harbor protocols, 2014.

19. Dunoyer, P., Brosnan, C.A., Schott, G., Wang, Y., Jay, F., Alioua, A., Himber, C. and Voinnet, O. (2010) An endogenous, systemic RNAi pathway in plants. The EMBO journal, 29, 1699-1712. 20. Axtell, M.J. (2013) Classification and comparison of small RNAs from plants. Annual review of

plant biology, 64, 137-159.

21. Johanson, T.M., Lew, A.M. and Chong, M.M. (2013) MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open biology, 3, 130144.

22. Macrae, I.J., Li, F., Zhou, K., Cande, W.Z. and Doudna, J.A. (2006) Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harbor symposia on quantitative biology, 71, 73-80.

23. Kim, K., Lee, Y.S., Harris, D., Nakahara, K. and Carthew, R.W. (2006) The RNAi pathway initiated by Dicer-2 in Drosophila. Cold Spring Harbor symposia on quantitative biology, 71, 39-44.

24. Welker, N.C., Pavelec, D.M., Nix, D.A., Duchaine, T.F., Kennedy, S. and Bass, B.L. (2010) Dicer's helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs. Rna, 16, 893-903.

25. Cook, A. and Conti, E. (2006) Dicer measures up. Nature structural & molecular biology, 13, 190-192.

26. Ji, X. (2008) The mechanism of RNase III action: how dicer dices. Current topics in microbiology and immunology, 320, 99-116.

27. Lepere, G., Nowacki, M., Serrano, V., Gout, J.F., Guglielmi, G., Duharcourt, S. and Meyer, E. (2009) Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic acids research, 37, 903-915.

28. Dlakic, M. (2006) DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics, 22, 2711-2714.

29. Liu, Q., Feng, Y. and Zhu, Z. (2009) Dicer-like (DCL) proteins in plants. Functional & integrative genomics, 9, 277-286.

30. Xie, Z. and Qi, X. (2008) Diverse small RNA-directed silencing pathways in plants. Biochimica et biophysica acta, 1779, 720-724.

31. Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J. and Carthew, R.W. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117, 69-81.

32. Kuhn, C.D. and Joshua-Tor, L. (2013) Eukaryotic Argonautes come into focus. Trends in biochemical sciences, 38, 263-271.

33. Meister, G. (2013) Argonaute proteins: functional insights and emerging roles. Nature reviews. Genetics, 14, 447-459.

34. Steiner, F.A., Hoogstrate, S.W., Okihara, K.L., Thijssen, K.L., Ketting, R.F., Plasterk, R.H. and Sijen, T. (2007) Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans. Nature structural & molecular biology, 14, 927-933.

35. Vaucheret, H. (2008) Plant ARGONAUTES. Trends in plant science, 13, 350-358.

36. Lee, H.C., Chang, S.S., Choudhary, S., Aalto, A.P., Maiti, M., Bamford, D.H. and Liu, Y. (2009) qiRNA is a new type of small interfering RNA induced by DNA damage. Nature, 459, 274-277. 37. Grishok, A. (2013) Biology and Mechanisms of Short RNAs in Caenorhabditis elegans.

Advances in genetics, 83, 1-69.

38. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C. et al. (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell, 133, 116-127.

39. Meister, G., Landthaler, M., Peters, L., Chen, P.Y., Urlaub, H., Luhrmann, R. and Tuschl, T. (2005) Identification of novel argonaute-associated proteins. Current biology : CB, 15, 2149-2155.

140

40. Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T. and Ishikawa, M. (2010) In vitro assembly of plant RNA-induced silencing

complexes facilitated by molecular chaperone HSP90. Molecular cell, 39, 282-291. 41. Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T. and Tomari, Y.

(2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Molecular cell, 39, 292-299.

42. Johnston, M., Geoffroy, M.C., Sobala, A., Hay, R. and Hutvagner, G. (2010) HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell, 21, 1462-1469.

43. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436, 740-744.

44. Liu, Q., Rand, T.A., Kalidas, S., Du, F., Kim, H.E., Smith, D.P. and Wang, X. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science, 301, 1921-1925.

45. Nishida, K.M., Miyoshi, K., Ogino, A., Miyoshi, T., Siomi, H. and Siomi, M.C. (2013) Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Molecular cell, 49, 680-691.

46. Tomari, Y., Matranga, C., Haley, B., Martinez, N. and Zamore, P.D. (2004) A protein sensor for siRNA asymmetry. Science, 306, 1377-1380.

47. Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P.D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199-208.

48. Nykanen, A., Haley, B. and Zamore, P.D. (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309-321.

49. Kwak, P.B. and Tomari, Y. (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. Nature structural & molecular biology, 19, 145-151.

50. Liu, Y., Ye, X., Jiang, F., Liang, C., Chen, D., Peng, J., Kinch, L.N., Grishin, N.V. and Liu, Q. (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science, 325, 750-753.

51. Maiti, M., Lee, H.C. and Liu, Y. (2007) QIP, a putative exonuclease, interacts with the

Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes & development, 21, 590-600.

52. Steiner, F.A., Okihara, K.L., Hoogstrate, S.W., Sijen, T. and Ketting, R.F. (2009) RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans. Nature structural & molecular biology, 16, 207-211.

53. Pak, J., Maniar, J.M., Mello, C.C. and Fire, A. (2012) Protection from feed-forward amplification in an amplified RNAi mechanism. Cell, 151, 885-899.

54. Bartel, D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-233.

55. Grewal, S.I. (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Current opinion in genetics & development, 20, 134-141.

56. Taliaferro, J.M., Aspden, J.L., Bradley, T., Marwha, D., Blanchette, M. and Rio, D.C. (2013) Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes & development, 27, 378-389.

57. Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C.I., Rendtlew Danielsen, J.M., Yang, Y.G. and Qi, Y. (2012) A role for small RNAs in DNA double-strand break repair. Cell, 149, 101-112.

58. Cogoni, C. and Macino, G. (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 399, 166-169.

59. Smardon, A., Spoerke, J.M., Stacey, S.C., Klein, M.E., Mackin, N. and Maine, E.M. (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Current biology : CB, 10, 169-178.

141

60. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. and Baulcombe, D.C. (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 101, 543-553.

61. Zong, J., Yao, X., Yin, J., Zhang, D. and Ma, H. (2009) Evolution of the RNA-dependent RNA polymerase (RdRP) genes: duplications and possible losses before and after the divergence of major eukaryotic groups. Gene, 447, 29-39.

62. Willmann, M.R., Endres, M.W., Cook, R.T. and Gregory, B.D. (2011) The Functions of RNA-Dependent RNA Polymerases in Arabidopsis. The Arabidopsis book / American Society of Plant Biologists, 9, e0146.

63. Wang, X., Laurie, J.D., Liu, T., Wentz, J. and Liu, X.S. (2011) Computational dissection of Arabidopsis smRNAome leads to discovery of novel microRNAs and short interfering RNAs associated with transcription start sites. Genomics, 97, 235-243.

64. Fei, Q., Xia, R. and Meyers, B.C. (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant cell, 25, 2400-2415.

65. Axtell, M.J., Jan, C., Rajagopalan, R. and Bartel, D.P. (2006) A two-hit trigger for siRNA biogenesis in plants. Cell, 127, 565-577.

66. Chen, H.M., Li, Y.H. and Wu, S.H. (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 3318-3323.

67. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. and Tabara, H. (2007) In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. The EMBO journal, 26, 5007-5019.

68. Pak, J. and Fire, A. (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science, 315, 241-244.

69. Thivierge, C., Makil, N., Flamand, M., Vasale, J.J., Mello, C.C., Wohlschlegel, J., Conte, D., Jr. and Duchaine, T.F. (2012) Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nature structural & molecular biology, 19, 90-97.

70. Makeyev, E.V. and Bamford, D.H. (2002) Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Molecular cell, 10, 1417-1427.

71. Calo, S., Nicolas, F.E., Vila, A., Torres-Martinez, S. and Ruiz-Vazquez, R.M. (2012) Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Molecular microbiology, 83, 379-394. 72. Zhang, Z., Xu, J., Koppetsch, B.S., Wang, J., Tipping, C., Ma, S., Weng, Z., Theurkauf, W.E. and

Zamore, P.D. (2011) Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Molecular cell, 44, 572-584.

73. Seila, A.C. and Sharp, P.A. (2008) Small RNAs tell big stories in Whistler. Nature cell biology, 10, 630-633.

74. Ji, L. and Chen, X. (2012) Regulation of small RNA stability: methylation and beyond. Cell research, 22, 624-636.

75. Kim, Y.K., Heo, I. and Kim, V.N. (2010) Modifications of small RNAs and their associated proteins. Cell, 143, 703-709.

76. Park, W., Li, J., Song, R., Messing, J. and Chen, X. (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current biology : CB, 12, 1484-1495.

77. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R. and Chen, X. (2005) Methylation as a crucial step in plant microRNA biogenesis. Science, 307, 932-935.

78. Yang, Z., Ebright, Y.W., Yu, B. and Chen, X. (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic acids research, 34, 667-675.

142

79. Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P. and Zamore, P.D. (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Current biology : CB, 17, 1265-1272.

80. Billi, A.C., Alessi, A.F., Khivansara, V., Han, T., Freeberg, M., Mitani, S. and Kim, J.K. (2012) The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS genetics, 8, e1002617.

81. Kamminga, L.M., Luteijn, M.J., den Broeder, M.J., Redl, S., Kaaij, L.J., Roovers, E.F., Ladurner, P., Berezikov, E. and Ketting, R.F. (2010) Hen1 is required for oocyte development and piRNA stability in zebrafish. The EMBO journal, 29, 3688-3700.

82. Kamminga, L.M., van Wolfswinkel, J.C., Luteijn, M.J., Kaaij, L.J., Bagijn, M.P., Sapetschnig, A., Miska, E.A., Berezikov, E. and Ketting, R.F. (2012) Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS genetics, 8, e1002702.

83. Wyman, S.K., Knouf, E.C., Parkin, R.K., Fritz, B.R., Lin, D.W., Dennis, L.M., Krouse, M.A., Webster, P.J. and Tewari, M. (2011) Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome research, 21, 1450-1461.

84. Katoh, T., Sakaguchi, Y., Miyauchi, K., Suzuki, T., Kashiwabara, S., Baba, T. and Suzuki, T. (2009) Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes & development, 23, 433-438.

85. Jones, M.R., Quinton, L.J., Blahna, M.T., Neilson, J.R., Fu, S., Ivanov, A.R., Wolf, D.A. and Mizgerd, J.P. (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature cell biology, 11, 1157-1163.

86. Ibrahim, F., Rymarquis, L.A., Kim, E.J., Becker, J., Balassa, E., Green, P.J. and Cerutti, H. (2010) Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 107, 3906-3911.

87. Wedeles, C.J., Wu, M.Z. and Claycomb, J.M. (2013) A multitasking Argonaute: exploring the many facets of C. elegans CSR-1. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 21, 573-586. 88. Jose, A.M., Garcia, G.A. and Hunter, C.P. (2011) Two classes of silencing RNAs move between

Caenorhabditis elegans tissues. Nature structural & molecular biology, 18, 1184-1188. 89. Lee, S.R. and Collins, K. (2006) Two classes of endogenous small RNAs in Tetrahymena

thermophila. Genes & development, 20, 28-33.

90. Lee, S.R., Talsky, K.B. and Collins, K. (2009) A single RNA-dependent RNA polymerase assembles with mutually exclusive nucleotidyl transferase subunits to direct different pathways of small RNA biogenesis. Rna, 15, 1363-1374.

91. Talsky, K.B. and Collins, K. (2010) Initiation by a eukaryotic RNA-dependent RNA polymerase requires looping of the template end and is influenced by the template-tailing activity of an associated uridyltransferase. The Journal of biological chemistry, 285, 27614-27623. 92. Adl, S.M., Simpson, A.G., Lane, C.E., Lukes, J., Bass, D., Bowser, S.S., Brown, M.W., Burki, F.,

Dunthorn, M., Hampl, V. et al. (2012) The revised classification of eukaryotes. J Eukaryot Microbiol, 59, 429-493.

93. Coyne, R.S., Lhuillier-Akakpo, M. and Duharcourt, S. (2012) RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biology of the cell / under the

auspices of the European Cell Biology Organization, 104, 309-325.

94. Singh, D.P., Saudemont, B., Guglielmi, G., Arnaiz, O., Gout, J.F., Prajer, M., Potekhin, A., Przybos, E., Aubusson-Fleury, A., Bhullar, S. et al. (2014) Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature, 509, 447-452.

95. Le Mouel, A., Butler, A., Caron, F. and Meyer, E. (2003) Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. Eukaryotic cell, 2, 1076-1090.

143

96. Duharcourt, S., Keller, A.M. and Meyer, E. (1998) Homology-dependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Molecular and cellular biology, 18, 7075-7085.

97. Arnaiz, O., Mathy, N., Baudry, C., Malinsky, S., Aury, J.M., Wilkes, C.D., Garnier, O., Labadie, K., Lauderdale, B.E., Le Mouel, A. et al. (2012) The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS genetics, 8, e1002984.

98. Baudry, C., Malinsky, S., Restituito, M., Kapusta, A., Rosa, S., Meyer, E. and Betermier, M. (2009) PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes & development, 23, 2478-2483. 99. Aury, J.M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B.M., Segurens, B., Daubin, V.,

Anthouard, V., Aiach, N. et al. (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature, 444, 171-178.

100. Coleman, A.W. (2005) Paramecium aurelia revisited. J Eukaryot Microbiol, 52, 68-77. 101. Sandoval, P.Y., Swart, E.C., Arambasic, M. and Nowacki, M. (2014) Functional diversification

of Dicer-like proteins and small RNAs required for genome sculpting. Developmental cell, 28, 174-188.

102. Mochizuki, K. and Gorovsky, M.A. (2005) A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes & development, 19, 77-89.

103. Bouhouche, K., Gout, J.F., Kapusta, A., Betermier, M. and Meyer, E. (2011) Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic acids research, 39, 4249-4264.

104. Marker, S., Le Mouel, A., Meyer, E. and Simon, M. (2010) Distinct RNA-dependent RNA polymerases are required for RNAi triggered by double-stranded RNA versus truncated transgenes in Paramecium tetraurelia. Nucleic acids research, 38, 4092-4107.

105. Ruiz, F., Vayssie, L., Klotz, C., Sperling, L. and Madeddu, L. (1998) Homology-dependent gene silencing in Paramecium. Mol Biol Cell, 9, 931-943.

106. Galvani, A. and Sperling, L. (2001) Transgene-mediated post-transcriptional gene silencing is inhibited by 3' non-coding sequences in Paramecium. Nucleic acids research, 29, 4387-4394. 107. Galvani, A. and Sperling, L. (2000) Regulation of secretory protein gene expression in

paramecium role of the cortical exocytotic sites. European journal of biochemistry / FEBS, 267, 3226-3234.

108. Garnier, O., Serrano, V., Duharcourt, S. and Meyer, E. (2004) RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Molecular and cellular biology, 24, 7370-7379.

109. Simon, M.C., Marker, S. and Schmidt, H.J. (2006) Posttranscriptional control is a strong factor enabling exclusive expression of surface antigens in Paramecium tetraurelia. Gene

expression, 13, 167-178.

110. Lepere, G., Betermier, M., Meyer, E. and Duharcourt, S. (2008) Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes & development, 22, 1501-1512.

111. Hall, I.M., Noma, K. and Grewal, S.I. (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 100, 193-198.

112. Liu, P., Long, L., Xiong, K., Yu, B., Chang, N., Xiong, J.W., Zhu, Z. and Liu, D. (2014)

Heritable/conditional genome editing in C. elegans using a CRISPR-Cas9 feeding system. Cell research, 24, 886-889.

113. Sijen, T., Steiner, F.A., Thijssen, K.L. and Plasterk, R.H. (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science, 315, 244-247.

144

114. Lee, S.R. and Collins, K. (2007) Physical and functional coupling of RNA-dependent RNA polymerase and Dicer in the biogenesis of endogenous siRNAs. Nature structural & molecular biology, 14, 604-610.

115. Raabe, C.A., Tang, T.H., Brosius, J. and Rozhdestvensky, T.S. (2014) Biases in small RNA deep sequencing data. Nucleic acids research, 42, 1414-1426.

116. Zhao, Y., Yu, Y., Zhai, J., Ramachandran, V., Dinh, T.T., Meyers, B.C., Mo, B. and Chen, X. (2012) The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Current biology : CB, 22, 689-694.

117. van Wolfswinkel, J.C., Claycomb, J.M., Batista, P.J., Mello, C.C., Berezikov, E. and Ketting, R.F. (2009) CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell, 139, 135-148.

118. Drinnenberg, I.A., Fink, G.R. and Bartel, D.P. (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science, 333, 1592.

119. Hyman, P. and Abedon, S.T. (2012) Smaller fleas: viruses of microorganisms. Scientifica, 2012, 734023.

120. Fujishima, M. and Kodama, Y. (2012) Endosymbionts in paramecium. European journal of protistology, 48, 124-137.

121. Beier, C.L., Horn, M., Michel, R., Schweikert, M., Gortz, H.D. and Wagner, M. (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Applied and environmental microbiology, 68, 6043-6050.

145

Marker et al.

147

I. Annexe I : Documents supplémentaires de l'article 1.

A forward genetic screen reveals essential and non-essential RNAi factors in

Paramecium tetraurelia

Simone Marker, Quentin Carradec, Véronique Tanty, Olivier Arnaiz and Eric Meyer

Supplementary Figures S1-S8 Supplementary Tables S1-S7 Supplementary references

– Figure S1 –

Figure S1: DsRNA isolated from E. coli HT115 DE3 food bacteria to induce silencing of Cid1-like genes, ND169 (reporter) and ICL7a (control). Bacterial total RNA was extracted by hot phenol (pH 4.0) and purified by ethanol-0.4M sodium chloride precipitation. High molecular weight bands represent 16S and 26S ribosomal RNA. Note that the amount of dsRNA (black arrowheads) produced from different gene fragments is highly variable, but reproducible for each fragment.

Marker et al.

148 – Figure S2 –

Figure S2: Non-canonical poly(A) RNA polymerases (Cid1-like nucleotidyl transferases) identified in the P. tetraurelia MAC genome. Alignments of protein sequences corresponding to the conserved domain were done using the MUSCLE software. Phylogenetic analysis was carried out using PhyML (bootstrapping procedure, 100 bootstraps) with default

Documents relatifs