• Aucun résultat trouvé

The case of non-invariant operators

Dans le document Lp-Lq multipliers on locally compact groups (Page 32-37)

5. Hörmander’s multiplier theorem on locally compact groups

5.4. The case of non-invariant operators

G

f(u)RA(u−1g)du. (5.26)

Then, byHölder’sinequality,wehave

|Af(g)| ≤ fLβ(G)RA(·−1g)Lβ(G)=fLβ(G)RALβ(G), (5.27) where we usedthattheHaar measureis translation-invariant.Then, bythe Hausdorff-Younginequality,wehave

RALβ(G)≤ F[RA]Lβ(VNR(G))=ALβ(VNR(G)), 1≤β≤2, (5.28) whereweusedthattheFouriertransform ofthekernelRAistheoperatorA,i.e.F[RA]= A.Combininginequality(5.27) and(5.28),weget

|Af(g)| ≤ fLβ(G)ALβ(VNR(G)), g∈G,1≤β 2. (5.29) Taking supremum over g G in the left-hand side of (5.29), we obtain (5.25). This completes theproof. 2

5.4. Thecase ofnon-invariant operators

Theorem5.1canbeextendedtonon-invariantoperators,andalsototheboundedness fornon-invariant operatorsinLorentzspaces, inanalogy toRemark5.2.

FortheformulationitisconvenienttousetheSchwartz-BruhatspacesS(G) thathave been developedbyBruhat[10] asaway ofdoingdistributiontheoryonlocally compact groups. We briefly mention its basic properties and refer to [10] for further details.

The space S(G) is a barrelled, bornological and complete locally convex topological vector space.It iscontinuously anddenselycontainedinthespace Cc(G) ofcompactly supported continuous functions.The space S(G) is densein everyLp(G),1≤p<∞, whichfollows fromthefactthatCc(G) isdenseinLp(G).

Theorem5.10. LetGbealocallycompactunimodularseparablegroup. LetD:L2(G) L2(G)be aclosed denselydefined operatorsuchthat itsinverseD−1 ismeasurablewith respecttoVNR(G) andsuchthat forsome 1< β 2we have

D1Lβ(VNR(G))<+∞. (5.30) LetAbealinearcontinuousoperatorontheSchwartz-BruhatspaceS(G).Thenforany 1< p≤2≤q <∞ wehave

ALp(G)→Lq(G)

G

D ◦AuLr,∞(VNR(G))

β

du

1 β

, (5.31)

where 1r = 1p1q.

Here{Au}isthefieldofoperatorsgeneratedbyvaryingtheSchwartzkernelKAofA, formoredetailswerefertotheproofofTheorem5.10.Butfirstweobservethatchoosing variousD,wegetdifferentinequalitiesin(5.30).Thus,beforeprovingTheorem5.10,we illustrateitinafewexamples.

Example5.11.LetGbeacompactLiegroupofdimensionnandletLG betheLaplace operatoronG.LetustakeD= (I− LG)n2.BytheWeyl’sasymptoticlaw(seee.g.[63]), weget

λk =k,

whereλk aretheeigenvaluesofD.Then,uptoconstant,weobtain D−1βLβ(VNR(G))

k=1

1

kβ <+∞, foranyβ >1.Thus,condition(5.30) issatisfied.

Example 5.12.Let us take G to be the Heisenberg group Hn with the homogeneous dimension Q= 2n+ 2, and let LsubHn be the canonical sub-Laplacian on Hn. It canbe computed(see(7.29))that

τ(E(0,s)(−LsubHn)) =CnsQ2. UsingthisandDefinition2.8, itcanbeshownthat

μt((I− LsubHn)α) = 1

1 +tQ2 α.

Fromthis weobtain

(I− LsubHn)−αβLβ(VNR(Hn))=

+∞

0

1

1 +tQ2αβdt, (5.32) whereweused theformula

τ(|A|p) =

+∞

0

μpt(A)dt

establishedin[67,Corollary 2.8,p. 278].Theintegralin(5.32) isconvergentifandonly ifαβ > Q2.

Proof of Theorem5.10. Letusdefine

Auf(g) :=LKA(u)f(g) = isa functionon G.The operatorA =D−1 is aleft Fourier multiplieron G.Then, by Theorem 5.9,weget

supg∈G|D−1h(g)| ≤ D−1Lβ(VNR(G)h(g)Lβ(G), 1< β≤2.

From this,forfunctionsoftheformh(g)=DAuf(g),wefinallyobtain sup

uG|Auf(g)|= sup

uG|D−1DAuf(g)| ≤ D−1Lβ(VNR(G)DAufLβu(G).

Therefore,usingtheMinkowskiintegralinequalitytochangetheorderofintegration, we obtain

G

DAuLr,∞(VNR(G))

β

du

1 β

fLp(G), wherethelastinequalityholdsdue toTheorem5.1.

ThiscompletestheproofofTheorem 5.10. 2 6. Spectralmultipliersonlocallycompactgroups

InthisandnextsectionwewillgiveanapplicationofTheorem5.1tospectral multi-pliers.

The classical Laplace operator ΔRn is affiliated with the von Neumann algebra VN(Rn) = VNL(Rn) = VNR(Rn) of all convolution operators, butis not measurable onVN(Rn). However,the Besselpotential (IΔRn)s2 ismeasurable withrespect to VN(Rn).Therefore, oneof theaimsof spectral multipliertheoremsis to“renormalise”

operators in Hilbert space H making them not only measurable butalso bounded. In thenext theorem we first describe sucha relationfor general semifinitevon Neumann algebras,and theninCorollary 6.2giveitsapplicationtospectral multipliers.

Theorem6.1.LetLbe aclosed unbounded operatoraffiliatedwithasemifinitevon Neu-mann algebra M B(H). Assume that ϕ is a monotonically decreasing continuous functionon[0,+) suchthat

ϕ(0) = 1, (6.1)

u→+∞lim ϕ(u) = 0. (6.2)

Thenforevery 1≤r <∞ wehavetheequality ϕ(|L|)Lr,(M)= sup

u>0

τ(E(0,u)(|L|))r1

ϕ(u). (6.3)

LetL be anarbitraryunboundedlinearoperatoraffiliatedwith (M,τ).Then Theo-rem6.1saysthatthefunctionϕ(|L|) isnecessarilyaffiliatedwithMandϕ(|L|)(M,τ) ifandonlyifther-thpowerϕrofϕgrowsatinfinitynotfasterthan τ(E 1

(0,u)(|L|)),i.e.if wehavetheestimate

ϕ(u)r 1

τ(E(0,u)(|L|)). (6.4)

Wenow giveacorollaryof Theorem6.1 forM = VNR(G) beingtheright von Neu-mannalgebraofalocallycompactunimodulargroup.ThisisformulatedinTheorem1.2 butwerecallithereforreaders’convenience.

Corollary6.2. LetGbe alocallycompactunimodularseparablegroupandletLbe aleft Fouriermultiplieron G.Letϕbe asinTheorem 6.1.Thenwehavetheinequality

ϕ(|L|)Lp(G)Lq(G)sup

u>0

ϕ(u)

τ(E(0,u)(|L|))1p1q

, 1< p≤2≤q <∞. (6.5) This corollary follows immediately from combining Theorem 5.1 and Theorem 6.1 with M= VNR(G),alsoprovingTheorem1.2.

For completeness, we give another corollary (of the proof of Theorem 6.1) without assumingthatϕismonotone,continuous,andsatisfiesconditions(6.1)-(6.2).Itisthese conditions thatallowus to rewriteCorollary 6.3inthe moreapplicableform of Corol-lary 6.2.

Corollary 6.3.LetGbealocallycompactunimodularseparablegroupandletLbealeft Fouriermultiplier onG.LetϕbeaBorelmeasurable functionon thespectrumSp(|L|).

Then wehavetheinequality ϕ(|L|)Lp(G)→Lq(G)sup

s>0

s[τ(E(s,+∞)(ϕ(|L|)))]1p1q, 1< p≤2≤q <∞. (6.6) Wewill provethiscorollary togetherwiththeproofofTheorem6.1.

Proof of Theorem6.1. Bydefinition ϕ(|L|)Lr,∞(M)= sup

t>0

t1p1qμt(ϕ(|L|)), 1 r =1

p−1 q. Using property(2.13) fromProposition2.9,weget

sup

t>0

tp11qμt(ϕ(|L|)) = sup

s>0

s[τ(E(s,+∞)(ϕ(|L|)))]p11q. Hence,wehave

ϕ(|L|)Lr,∞(M)= sup

s>0

s[τ(E(s,+)(ϕ(|L|)))]1p1q. (6.7) SinceLisaffiliatedwithM thespectralprojectionsEΩ(|L|) belongtoM.LetLbean abelian subalgebraof M generated bythe spectralprojectors E(λ,+∞)(|L|). Letϕbe a Borel measurable functionon thespectrumSp(|L|). Then byBorel functional calculus [5,Section2.6] itispossible toconstructtheoperatorϕ(|L|).This operatoris astrong limitofthespectralprojectionsEΩ(|L|)∈M.Thereforeϕ(|L|) isaffiliatedwithM.The distributionfunctionoftheoperatorϕ(|L|) isgivenby

ds(ϕ(|L|)) =τ(E(s,+∞)(ϕ(|L|))). (6.8) This provesCorollary6.3.

Using [39,Corollary 5.6.29,p. 363] andthespectral mappingtheorem (see[39, The-orem 4.1.6]),weobtain

τ(E(s,+)(ϕ(|L|))) =τ(Eϕ−1(s,+∞)−1◦ϕ(|L|))) =τ(E(0,ϕ−1(s))(|L|)). (6.9) Fromthehypothesis(6.2) imposedonϕand using(6.9),weget

s→+∞lim τ(E(s,+∞)(ϕ(|L|))) = lim

s→+∞τ(E(0,ϕ−1(s))(|L|)) = 0. (6.10) Hence, theoperator ϕ(|L|) is τ-measurable with respect to VNR(G). Combining (6.7) and(6.9),wefinallyobtain

ϕ(|L|)Lr,∞(M)= sup

t>0

t1p1qμt(ϕ(|L|)) = sup

s>0

s[τ(E(s,+∞)(ϕ(|L|)))]1p1q

= sup

s>0

s[τ(E(0,ϕ−1(s))(|L|))]p11q = sup

u>0

ϕ(u)[τ(E(0,u)(|L|))]1p1q,

where inthe last equality we used the monotonicityof ϕ. This completes the proof of Theorem6.1. 2

Dans le document Lp-Lq multipliers on locally compact groups (Page 32-37)

Documents relatifs