• Aucun résultat trouvé

(a)Bistability: returntoequilibriumviathesame

im-pulse

0 1000 2000 3000 4000 5000 6000

−5 0 5 10

0 1000 2000 3000 4000 5000 6000

−5 0 5 10

(P) bistability

(b)Bistability

Figure9: Bistabilityphenomenon: Therst impulseindues aself-sustainedtoni spiking

behaviorwhilethesystemhasastablexedpoint. Theseondimpulseperturbsthisregular

spikingbehaviorandthesystemfalls intheattrationbasin ofthestablexed point.

ˆ (xviii)/(xx) Self-sustainedsubthreshold osillations and purely osillating mode: they

arelinkedwiththesuperritialHopfbifurationanditsstableperiodiorbit. These

twobehaviors annot be obtainedin theIBG models sinethe Hopfbifuration are

alwayssubritial.

4.3 Self-sustained subthreshold osillations in ortialneurons

Inthis studywegaveasetof suientonditionsto obtainanIBG-likemodel ofneuron.

InthisframeworkweproposedamodelthatdisplaysaBautinbifurationtheIBGneurons

lak; as a onsequene our model an produe subthreshold osillations. In this setion,

weexplainform abiologialpointof viewtheoriginandtheroleof thoseosillations,and

reproduein vivoreordings.

In theIBG models, theAndronov-Hopf bifuration is alwayssubritial. Theonly

os-illationsreatedinthese modelsaredamped(seeFig 11(a)),andorrespondin thephase

planetotheonvergenetoaxedpointwheretheJaobianmatrixhasomplexeigenvalues.

OurquartimodelundergoessuperritialAndronov-Hopfbifurations,sothereare

attrat-ing periodi solutions. This meansthat theneurons anshowself-sustained subthreshold

osillations(Figs. 11(b)and11())whihisofpartiularimportanein neurosiene.

Mostbiologialneuronsshowasharptransitionfromsilenetoaspikingbehavior,whih

isreproduedinallthemodelsoflass1.1. However,experimentalstudiessuggestthatsome

neuronsmay experienearegimeofsmall osillations[22℄. Thesesubthresholdosillations

anfailitate the generation of spike osillations when the membrane gets depolarized or

(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability (xvii) depol. after−pot. (xviii) self−sustained oscill.

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Figure10: PhasediagramsorrespondingtothebehaviorspresentedinFig 5.

0 5 10 15 20 25 30 35 40 45 50

−2

−1 0 1

0 5 10 15 20 25 30 35 40 45 50

−2 0 2

−1.5 −1 −0.5 0 0.5 1

−2 0 2

(a) Dampedosillations

0 2000 4000 6000 8000 10000 12000 14000 16000

−0.635

−0.63

−0.625

−0.62

0 2000 4000 6000 8000 10000 12000 14000 16000

−1.58

−1.575

−1.57

−1.565

−0.633 −0.632 −0.631 −0.63 −0.629 −0.628 −0.627 −0.626 −0.625 −0.624

−1.58

−1.575

−1.57

−1.565

(b)Transientphasetowardsthe

self-sustainedosillations

0 2000 4000 6000 8000 10000 12000

−1

−0.5 0

0 2000 4000 6000 8000 10000 12000

−2

−1.5

−1

−0.5

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

−2

−1.5

−1

−0.5

() Self-sustained osillations

(stationnarystate)

Figure11: ThequartimodelshowsdampedsubthresholdosillationsliketheIBGmodels

(Fig. 11(a)): the trajetory ollapses to axed point(

a = 1, b = 1.5, I = 0.1, T max = 100, dt = 0.01

. Theupper(blue)urverepresentsthesolutionin

v

,themiddle(red)one

w

andthelast onethe trajetoryintheplane

(v, w)

. Self-sustained subthresholdosillations ofthequartimodel(Figs11(b)and11()): thetrajetoryisattratedtowardsalimityle

(parameters:

a = 1, b = 5/2, I = − 3(a/4) 4/3 (2a − 1), T max = 150000, dt = 0.01, I = ( − 3(a/4) 4/3 (2a − 1) + 0.001)

hyperpolarized [23, 24℄. They also play an important role in shaping spei forms of

rhythmiativitythat arevulnerabletothenoiseinthenetwork dynamis.

Forinstane, theinferiorolivenuleus, apartofthe brainthat sendssensory

informa-tiontotheerebellum,isomposed ofneuronsableto supportosillationsaroundtherest

potential. IthasbeenshownbyLlinásandYarom[23,24℄thatthepreisionandrobustness

ofthese osillationsareimportant forthepreisionand therobustnessofspikegeneration

patterns. The quarti model is able to reprodue the main features of the inferior olive

neurondynamis:

i. autonomous subthreshold periodi andregular osillations. (see intraellular

reord-ingsofinferioroliveneuronsinbrainstemsliesin [24℄).

ii. Rhythmigenerationofationpotentials.

Therobustsubthreshold osillationsshownbyin vivoreordings[4,21, 24℄ orrespond

inourquartimodeltothestablelimityleomingfromthesuperritialHopfbifuration.

Theosillationsgeneratedbythisyleare stable,and theyhaveadeniteamplitudeand

frequeny. This osillation ours at thesametime that the rhythmi spike generation in

presene of noisyor varying input. Note that other neuron models suh as those studied

above,eveniftheydonotundergoasuperritialHopfbifuration,analsoexhibit

osilla-tionsinthepreseneofnoise,forinstanenearasubritialHopfbifuration. Nevertheless,

theseosillationshavenottheregularityintheamplitudeandthefrequenylinkedwiththe

presene of anattrating limit yle. The resultswe obtainsimulatingthe quarti model

areverysimilartothoseobtainedbyin vivoreordings(seeg. 12).

Buttheinferioroliveneuronsarenottheonlyneuronstopresentsubthresholdmembrane

potentialosillations. Forinstane,stellateellsintheenthorhinalortexdemonstratetheta

frequenysubthreshold osillations[1,2,17℄),linkedwiththepersistantNa

+

urrent

I

NaP.

Wenowonludethissetiononthespeiexampleofsubthresholdself-sustained

osil-lationsgivenbythedorsal rootganglia(DRG) neuron. This neuronpresentssubthreshold

membranepotentialosillationsoupledwithrepetitivespikedishargeorburst,forinstane

in theaseofanerveinjury[20, 3℄. The gureFig.12(d), arebiologialin vivo

intraellu-larreordingsperformed byLiu et al [20℄ from aDRGneuron of an adultmale rat. The

reordedmembranepotentialexhibithighfrequenysubthresholdosillationinthepresene

ofnoise,ombinedwitharepetitivespikingorbursting. Thesebehaviorsanbereprodued

bythe quartimodelasweansee in the gureFig.12, around apointwhere thesystem

undergoesasuperritialHopfbifuration 7

.

Conlusion

Inthis paperwedened a generallass of neuronmodels ableto reproduea widerange

of neuronal behaviors observed in experiments on ortial neurons. This lass inludes

the Izhikevih and the Brette-Gerstner models, whih are widely used. We derived the

bifurationdiagramoftheneuronsofthislass,andprovedthattheyallundergothesame

typesofbifurations: asaddle-nodebifurationurve,anAndronov-Hopfbifurationurve

andaodimension2Bogdanov-Takensbifuration. Weprovedthattherewasonlyoneother

possiblexed-pointbifuration, aBautinbifuration. Then using thosetheoretial results

we proved that the Izhikevih and the Brette-Gerstner models had the same bifuration

diagram.

Thistheoretialstudyallowsustosearhforinterestingmodelsinthislassofneurons.

Indeed,theorem1.5ensuresusthatthebifurationdiagramwill presentatleastthe

bifur-ationsstated. This informationis ofgreatinterestif wewanttoontrol thesubthreshold

behavioroftheneuronof interest.

Followingthese ideas, we introdued anew neuronmodel of ourglobal lass

undergo-ing the Bautinbifuration. This model, alled the quarti model, is omputationally and

mathematiallyas simpleastheIBG models, and ableto reproduesomeortial neuron

behaviorswhihtheIBGmodelsannotreprodue.

Thisstudyfousedonthesubthresholdpropertiesofthislassofneurons. Theadaptative

reset of the model is of great interest and is a key parameter in the repetitive spiking

propertiesoftheneuron. Itsmathematialstudyis veryrih,andisstillanongoingwork.

7

Theamplitudeandfrequenyofthesubthresholdosillationsanbeontrolledhosingapointonthe

superritialHopfbifurationurve.

0 0.5 1 1.5 2 2.5 3 x 104

−2

−1 0 1 2 3 4 5

(a)Withoutspiking

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

x 104

−2

−1.5

−1

−0.5 0 0.5 1 1.5 2 2.5 3

(b)Withintermittentspiking

2.5 3 3.5 4 4.5 5 5.5 6

x 104

−2

−1.5

−1

−0.5 0 0.5 1 1.5 2

() Withintermittentbursting

(d)Biologialreordings

Figure 12: Subthreshold membrane osillations, qualitatively reproduing the reordings

from[20℄indorsalrootganglion(DRG)neurons. Traesillustrate(12(a))osillations

with-outspiking, (12(b)) osillationswith intermittent spiking and (12())osillations with

in-termittentbursting. (in thegures,spikesaretrunated). Thenoisyinputis an

Ornstein-Ulhenbek proess. The biologial reordings 12(d) are reprodued from [20, Fig.1℄ with

permission.

Aknowledgments

The author warmly aknowledges T. Viéville, B. Cessa,Olivier Faugerasfor fruitful

dis-ussionsandsuggestions.

A Bautin bifuration

In this appendix we prove that the quarti model undergoesa Bautin bifuration at the

point

 

  b = 5 2 a I = − 3 a 4 4/3

(2 a − 1) v a = − a 4 1/3

(A.1)

A.1 The rst Lyapunov exponent

Indeed,usingasuitableanehangeofoordinates,thesystematthispointreads:

 

 

 

 

˙ x = ωy

˙

y = ab ω 6v 2 a v 1 (x, y) 2 + 4v a v 1 (x, y) 3 + v 1 (x, y) 4

= 1 2 F 2 ( x y , x y

) + 1 6 F 3 ( x y , x y

, x y

) + 24 1 F 3 ( x y , x y

, x y , x y

)

(A.2)

where

v 1 (x, y) = 1 b x + ab ω y

. We also denote

F 2 (X, Y )

,

F 3 (X, Y, Z)

and

F 4 (X, Y, Z, T )

the

multilinearsymmetrivetorfuntions of (A.2)(

X, Y, Z, T ∈

R

2

).

( F 2 ( x y , z t

) = 12 ab 0

ω v 2 a v 1 (x,y)v 1 (z,t)

. . .

To ompute the two rst Lyapunov exponents of the system, we follow Kuznetsov's

method [19℄. In this method we need to ompute some spei right and left omplex

eigenvetors,whihanbehoseninouraseto be:

 

 

 

 

 

 

 

 

 p =

1

− i √ a b − a 2 +a

1

!

q =

1 2

(i √

a(b − a)+a)b b − a − i √

a(b − a)

1/2 (i

√ a(b − a)+a) 2 a (b − a − i √

a(b − a))

(A.3)

Wenowputthesysteminaomplexformletting

z = x + iy

g ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g 20 =< p, F 2 (q, q) >

g 11 =< p, F 2 (q, q) ¯ >

g 02 =< p, F 2 (¯ q, q) ¯ >

g 30 =< p, F 3 (q, q, q) >

g 21 =< p, F 3 (q, q, q) ¯ >

g 12 =< p, F 3 (¯ q, q, ¯ q) ¯ >

g 03 =< p, F 3 (¯ q, q, ¯ q) ¯ >

. . .

(A.4)

SotheTayloroeients(A.4) read:

 

 

 

 

 

 

 

 

g 20 = 12 ab ω v 2 a v 1

1 2

(i √

a(b − a)+a)b b − a − i √

a(b − a) , 1 2 (i

√ a(b − a)+a) 2 a (b − a − i √

a(b − a))

2

g 11 = 12 ab ω v 2 a v 1 (q)v 1 (¯ q) g 02 = 12 ab ω v 2 a v 1 (¯ q)v 1 (¯ q) . . .

(A.5)

Letnow

S(I, b) := F (v (I, b))

bethevalueof thederivativeofthefuntion

F

, dened

aroundthebifurationpointweareinterestedin.

TheJaobianmatrixintheneighboorhoodofthepoint(A.1)reads:

L(v) =

S(I, b) 1 ab − a

Letusdenote

α = I b

theparametervetor,

λ(α) = µ(α) ± iω(α)

theeigenvaluesofthe Jaobianmatrix. Wehave:

( µ(α) = 1 2 (S(α) − a) ω(α) = 1 2 p

− (S(α) − a) 2 + 4ab

With thesenotations,let

c 1 (α)

betheomplexdened by:

c 1 (α) = g 20 g 11 (2λ + ¯ λ)

2 | λ | 2 + | g 11 | 2

λ + | g 02 | 2

2(2λ − ¯ λ) + g 21

2 .

(inthisformulaweomitthedependane in

α

of

λ

forthesakeoflarity.

TherstLyapunovexponent

l 1 (α)

eventuallyreads:

l 1 (α) = Re(c 1 (α))

ω(α) − µ(α)

ω(α) 2 Im(c 1 (α))

(A.6)

A.2 The seond Lyapunov exponent

ThemethodtoomputetheseondLyapunovexponentisthesameastheonewedesribed

intheprevioussetion. Theexpressionisgivenbythefollowingformula:

2l 2 (0) = 1

ω(0) Re[g 32 ]

+ 1

ω(0) 2 Im[g 20 g ¯ 31 − g 11 (4 g 31 + 3 ¯ g 22 ) − 1

3 g 02 (g 40 + ¯ g 13 ) − g 30 g 12 ]

+ 1

ω(0) 3 { Re[g 20

¯

g 11 (3 g 12 − g ¯ 30 ) + g 02 ( ¯ g 12 − 1/3 g 30 ) + 1 3 g ¯ 02 g 03

+ g 11 ( ¯ g 02

5

3 g ¯ 30 + 3 g 12

+ 1

3 g 02 g ¯ 03 − 4 g 11 g 30 )]

+ 3 Im[g 20 g 11 ]Im[g 21 ] }

+ 1

ω(0) 4 { Im[g 11 g ¯ 02 g ¯ 20 2

− 3 ¯ g 20 g 11 − 4 g 11 2 ] + Im[g 20 g 11 ] 3 Re(g 20 g 11 ) − 2 | g 02 | 2

}

This expression is quite intriate in ourase. Nevertheless we havea losed-form

ex-pressiondepending on theparameter

a

, vanishing for twovalues of theparameter

a

. We

evaluatenumeriallythisseondLyapunovexponent. Wegetthefollowingexpression:

l 2 (a) ≈ − 0.003165 a 28 3 − 0.1898 a 22 3 + 0.3194 a 16/3

− 0.05392 a 25 3 + 0.1400 a 19 3 − 0.3880 a 7/3 + 0.5530 a 10/3 +0.7450 a 13/3 .

(A.7)

Weansee thatthis numerialexponentvanishesonlyfor twovaluesof theparameter

a

whihare

{ 0.5304, 2.385 } .

The expression of the determinant of the matrix

D I,b (µ(I, b), l 1 (I, b))

are even more

involved,sowedonot reprodue ithere(it would takepagesto write down its numerial

expression!). Nevertheless,weproeedexatlyaswedidfortheseondLyapunovexponent

andobtainagaintherigorousresultthatthis determinantnevervanishesforall

a > 0

.

InthisannexwegivethenumerialvaluesusedtogenerateFig. 5.

(i)ToniSpiking (ii)PhasiSpiking (iii)ToniBursting

a = 1

;

b = 0.49

;

v r = 0

;

a = 1

;

b = 0.76

;

v r = 0.2

;

a = 0.15

;

b = 1.68

;

v r = ( − 2a + b) 1 3

;

I(t) = 1.56

1

t>1 (t)

;

d = 1

;

I = 0.37

1

t>1 (t)

;

d = 1

;

I = 4.67

1

t>1 (t)

;

d = 1

;

T = 10

;

dt = 0.01

;

θ = 10

;

T = 10

;

dt = 0.01

;

θ = 10

;

T = 30

;

dt = 0.01

;

θ = 10

;

(iv)PhasiBursting (v)MixedMode (vi)SpikeFreq.Adaptation

a=1.58;b=1.70;

v r = − a 4 1

3

; a=0.07;b=0.32;

v r =

0; a=0.02;b=0.74;

v r =

0;

I(t) =0.73

1

t>1 (t)

;

d =

0.01;

I(t) =3.84

1

t>1 (t)

;

d =

1.50;

I(t) =4.33

1

t>1 (t)

;

d =

0.36;

T =

50;

dt =

0.01;

θ =

10.

T =

50;

dt =

0.01;

θ =

10.

T =

50;

dt =

0.01;

θ =

10.

(vii)Class1Exitability (viii)Class2Exitability (ix)SpikeLateny

a=4;b=0.67;

v r =

-1.3; a=1;b=1.09;

v r =

-1.2; a=0.02;b=0.42;

v r =

0;

I(t) = − 0.1 + 0.23t

;

d =

1;

I(t) =0.06t

;

d =

5;

I(t) =5δ 7.5 (t)

;

d =

1;

T =

30;

dt =

0.01;

θ =

10.

T =

50;

dt =

0.01;

θ =

20.

T =

15;

dt =

0.01;

θ =

10.

(x)DampedSubthr.Osill. (xi)Resonator (xii)Integrator

a=2.58;b=4.16;

v r =

0.1; a=5.00;b=7.88;

v r =

-1.28; a=1.00;b=1.10;

v r =

-0.97;

I(t) =2δ 2 (t)

;

d =

0.05;

I(t) =δ 6,6.8,15,16.5,24,26 (t)

;

d =

0.5;

I(t) =δ 2.5,3.3,17.5,19 (t)

;

d =

0.5;

T =

20;

dt =

0.01;

θ =

10.

T =

30;

dt =

0.01;

θ =

10.

T =

25;

dt =

0.01;

θ =

10.

(xiii)ReboundSpike (xiv)ReboundBurst (xv)Thresholdvariability

a=1;b=2;

v r =

-0.63; a=1;b=2;

v r =

1.3; a=1;b=1.23;

v r =

-0.91;

I(t) = − 0.48 − 5δ 2.5 (t)

;

d =

1;

I(t) = − 0.48 − 30δ 6.5 (t)

;

d =

1;

I(t) =δ 2,16.5 − δ 15

;

d =

1;

T =

50;

dt =

0.1;

θ =

10.

T =

20;

dt =

0.01;

θ =

10.

T =

20;

dt =

0.01;

θ =

10.

(xvi)Bistability (xvii)Depol.after-pot (xviii)Self-sustainedosill.

a=1;b=1.2;

v r =

0.8; a=1;b=1.5;

v r =

0.06; a=1;b=2.5;

v r =

-0.63;

I (t) = − 0.47 + 20 ∗ (δ 10 − δ 30 )

;

d =

0.5;

I(t) =2δ 3

;

d =

0.01;

I(t) = − 0.475 + 10 ∗ δ 10

;

d =

1;

T =

50;

dt =

0.01;

θ =

10.

T =

30;

dt =

0.01;

θ =

10.

T =

100;

dt =

0.01;

θ =

10.

(xix)MixedChatter/

C 1

ex. (xx)Purelyosill.

a=0.89;b=3.65;

v r =

1.12; a=1;b=2.6;

v r =

-0.63;

I(t) =0.07t

;

d =

1;

I(t) = − 0.47

1

t>1

;

d =

1;

T =

50;

dt =

0.01;

θ =

10.

T =

500;

dt =

0.01;

θ =

10.

Remark. The

δ u (t)

funtionisdenedby:

δ u1,...uN (t) = 8

<

:

1

if

t ∈ S

k∈{1,...N}

[u k , u k + 0.3]

0

else

Referenes

[1℄ A.AlonsoandR.Klink,Dierentialeletroresponsivenessofstellateand

pyramidal-like ells of medial entorhinal ortex layer II, Journalof Neurophysiology, 70 (1993),

pp.128143.

[2℄ A. Alonso and R. Llinás, Subthreshold Na+-dependent theta-like rhythmiity in

stellate ells ofentorhinal ortexlayerII,Nature,342(1989),pp.175177.

[3℄ R Amir,M. Mihaelis, and M.Devor,Membrane potential osillations in dorsal

rootganglionneurons: Roleinnormaleletrogenesisandneuropathipain,TheJournal

of Neurosiene,19(1999),pp.85898596.

[4℄ L.S. Bernardo and R.E. Foster, Osillatory behavior in inferior olive neurons:

mehanism,modulation,ellagregates,BrainresearhBulletin,17(1986),pp.773784.

[5℄ R. Brette andW. Gerstner, Adaptive exponential integrate-and-remodel as an

eetivedesription of neuronalativity,JNeurophysiol,94(2005),pp.36373642.

[6℄ B.Ermentrout,M.Pasal,andB.Gutkin,Theeetsofspikefrequeny

adapta-tionandnegativefeedbakonthesynhronizationofneuralosillators.,NeuralComput,

13(2001),pp.12851310.

[7℄ L.C.Evans,PartialDierentialEquations,vol.19ofGraduateStudiesin

Mathemat-is,1998.

[8℄ W. Gerstner and W.M. Kistler, Spiking Neuron Models, CambridgeUniversity

Press,2002.

[9℄ J. Gukenheimer and P. J. Holmes, Nonlinear Osillations, Dynamial Systems

and Bifurations of VetorFields,vol.42of Appliedmathematial sienes,Springer,

NewYork,1983.

[10℄ B. Gutkin, B. Ermentrout, and A. Reyes, Phase-response urves give the

re-sponses of neuronstotransient inputs.,JNeurophysiol,94(2005),pp.16231635.

[11℄ A.L. Hodgkin and A.F. Huxley, A quantitative desription of membrane urrent

and its appliation to ondution and exitation in nerve., Journalof Physiology, 117

(1952),pp.500544.

[12℄ F. Hoppensteadt and E.M. Izhikevih, Weakly onneted neural networks,

Springer-VerlagNewYork,In.,Seauus, NJ,USA,1997.

[13℄ E.M. Izhikevih, Neural exitability, spiking, and bursting, InternationalJournalof

Bifuration andChaos,10(2000),pp.11711266.

[14℄ , Simple model of spiking neurons, IEEE Transations on Neural Networks 14

(2003),pp.15691572.

[15℄ ,Whih model tousefor ortial spikingneurons?,IEEE TransNeuralNetw,15

(2004),pp.10631070.

[16℄ ,DynamialSystemsinNeurosiene: TheGeometryofExitabilityandBursting,

MITPress,2007.

[17℄ RSG Jones, Synapti and intrinsi properties of neurones of origin of the perforant

path inlayerIIofthe ratentorhinalortexinvitro,Hippoampus`,4(1994),pp.335

353.

[18℄ C.KohandI.Segev,eds.,MethodsinNeuronalModeling: FromIonstoNetworks,

TheMITPress,1998.

[19℄ Y. Kuznetsov,Elementsof appliedbifuration theory(2nded.),Springer-VerlagNew

York,In.,NewYork,NY, USA,1998.

subthreshold membrane potential osillations in drg neurons: Relation to neuropathi

pain,JournalofNeurophysiology,84(2000),pp.205215.

[21℄ R.Llinás,Theintrinsieletrophysiologialpropertiesofmammalianneurons: insights

intoentral nervous systemfuntion,Siene, 242(1988),pp.16541664.

[22℄ ,Theintrinsieletrophysiologial propertiesofmammalianneurons: insightsinto

entral nervous systemfuntion.,Siene,242(1988),pp.16541664.

[23℄ R Llinás and Y Yarom, Eletrophysiology of mammalian inferior olivary neurones

invitro.dierenttypesofvoltage-dependentioniondutanes.,JPhysiol.,315(1981),

pp.549567.

[24℄ RLlinásandY.Yarom,Osillatorypropertiesofguinea-piginferiorolivaryneurones

and their pharmaologial modulation: an in vitro study, Journal of physiology, 376

(1986),pp.163182.

[25℄ J. RinzelandB.Ermentrout,Analysisofneural exitabilityandosillations,MIT

Press,Cambridge,MA,USA,1989.

[26℄ J. A. White, T. Budde, and A. R. Kay, A bifuration analysis of neuronal

sub-threshold osillations.,BiophysJ,69(1995),pp.12031217.

Documents relatifs