• Aucun résultat trouvé

5-HDGF comme cible thérapeutique et facteur pronostique potentiel

Le neuroblastome présente des manifestations cliniques et des pronostics très variables. Afin de déterminer au mieux le traitement le plus adapté à la pathologie, de nombreux outils pronostiques ont été définis28. La corrélation entre le niveau d’expression de la protéine HDGF et la malignité du neuroblastome pourrait faire de HDGF un nouveau facteur pronostique dans le neuroblastome.

De plus, le niveau d’expression de la protéine HDGF semble corréler avec la taille des tumeurs sympathiques in vivo. Une interférence avec l’expression de la protéine HDGF ralentit la croissance tumorale in vivo. HDGF pourrait donc être une cible thérapeutique intéressante à exploiter afin de freiner la croissance tumorale.

En effet, HDGF jouant un rôle pro-tumoral dans de nombreux cancers, le développement de molécules ciblant la protéine HDGF est une stratégie thérapeutique prometteuse. Partant de ce constat et des nombreuses découvertes faites sur le rôle de HDGF dans les cancers du poumon, Ren et ses collègues ont déposé en 2008 un brevet d’invention pour le développement de techniques d’interférence avec HDGF, à visée thérapeutique. En 2009, Ren et al. ont mis au point

Ubiquitination et dégradation de MYCN par le protéasome

P P PIP3 P P P P P P P P Aurora KinaseA PI3K PDK1 Akt mTOR CDK1 MYCN MYCN GSK3Ⱦ Transcription MYCN ALK RAS RAF MEK1/2 ERK1/2 Progression du cycle cellulaire HDGF

Figure 21. HDGF pourrait interagir fonctionnellement avec les oncogènes majeurs du neuroblastome ; ALK et MYCN. ƒ±–±†±…”‹–’‘—”ƒ…–‹˜‡”Žƒ˜‘‹‡͵Ȁ–ǡƒ…–‹˜±‡ƒ—••‹’ƒ”Ž‡”±…‡’–‡—”‡–‹ϐŽ—ƒ– indirectement sur la stabilisation de MYCN et sa translocation nucléaire.

un panel d’anticorps bloquant dont ils ont démontré l’efficacité, mais encore non commercialisés176. Cette démarche ou la recherche de petites molécules ciblant HDGF pourrait présenter un intérêt majeur dans le traitement de la pathologie neuroblastique pour laquelle l’accès à de nouvelles propositions thérapeutiques fait cruellement défaut.

B

IBLIOGRAPHIE

1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell (2011).

doi:10.1016/j.cell.2011.02.013

2. Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer Review University of California at San Francisco. 100, 57–70 (2000).

3. Fouad, Y. A. & Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 7, 1016–1036 (2017).

4. Marusyk, A. et al. Non-cell autonomous tumor-growth driving supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

5. Dawood, S., Austin, L. & Cristofanilli, M. Cancer Stem Cells: Implications for Cancer Therapy. Oncol. (willist. Park. NY) 1–11 (2014). doi:10.1007/978-1-60327-933-8 6. Werb, Z. & Lu, P. The Role of Stroma in Tumor Development. Cancer J. 21, 250–253

(2015).

7. Shimoda, M., Mellody, K. T. & Orimo, A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin. Cell Dev. Biol. 21, 19–25 (2010). 8. Augsten, M. Cancer-Associated Fibroblasts as Another Polarized Cell Type of the Tumor

Microenvironment. Front. Oncol. 4, 62 (2014).

9. Komohara, Y. & Takeya, M. CAFs and TAMs: maestros of the tumour microenvironment. J. Pathol. 241, 313–315 (2017).

10. Orimo, A. et al. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 121, 335–348 (2005).

11. Shiga, K. et al. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel). 7, 2443–2458 (2015).

12. Torres, S. et al. LOXL2 Is Highly Expressed in Cancer-Associated Fibroblasts and Associates to Poor Colon Cancer Survival. Clin. Cancer Res. 21, 4892 LP-4902 (2015). 13. Zijlmaans, H. J. M. A. A. et al. The absence of CCL2 expression in cervical carcinoma is

associated with increased survival and loss of heterozygosity at 17q11.2. J. Pathol. 208, 507–517 (2006).

14. Tsutsui, S. et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol. Rep. 14, 425–431 (2005).

15. Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers (Basel). 6, 1670–1690 (2014). 16. Zamarron, B. F. & Chen, W. Dual Roles of Immune Cells and Their Factors in Cancer

Development and Progression. Int. J. Biol. Sci. 7, 651–658 (2011).

17. Marshall, G. M. et al. The prenatal origins of cancer. (2014). doi:10.1038/nrc3679 18. Shah, M. & Allegrucci, C. in (ed. Kundu, T. K.) 545–565 (Springer Netherlands, 2013).

doi:10.1007/978-94-007-4525-4_24

19. Morgenstern, D. A. & Anderson, J. Inflammation: What role in pediatric cancer? Pediatr. Blood Cancer 58, 659–664 (2012).

20. Mackall, C. L., Merchant, M. S. & Fry, T. J. Immune-based therapies for childhood cancer. Nat Rev Clin Oncol 11, 693–703 (2014).

21. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3, 203–216 (2003).

22. Maris, J. M., Hogarty, M. D., Bagatell, R. & Cohn, S. L. Neuroblastoma. Lancet 369, 2106– 2120 (2007).

23. Maris, J. M. 2010. Maris. Recent Advances in Neuroblastoma.

http://dx.doi.org.ez.srv.meduniwien.ac.at/10.1056/NEJMra0804577 (2010).

24. Huang, M. & Weiss, W. a. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 3, a014415 (2013).

25. Matthay, K. K. et al. Neuroblastoma. Nat. Rev. Dis. Prim. 2, 16078 (2016). 26. Evans, E. a Proposed Staging for Children.

27. Brodeur, G. M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 11, 1466–1477 (1993).

28. Cohn, S. L. et al. The International Neuroblastoma Risk Group (INRG) classification system: An INRG task force report. J. Clin. Oncol. 27, 289–297 (2009).

29. Adam, O., Boia, E., Ilie, R. & Mandrusca, R. GANGLIONEUROMA. 39–40 (2007).

30. Przkora, R., Perez-Canto, A., Ertel, W. & Heyde, C. E. Ganglioneuroma: Primary tumor or maturation of a suspected neuroblastoma? Eur. Spine J. (2006). doi:10.1007/s00586-005-0964-9

31. Christein, J. D., Kim, A. W., Jakate, S. & Deziel, D. J. Central pancreatectomy for a pancreatic ganglioneuroma in a patient with previous neuroblastoma. Pancreatology 2, 557–560 (2002).

32. Cheung, N.-K. V. & Dyer, M. A. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer (2013). doi:10.1038/nrc3526

33. Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal

differentiation.

34. Nakagawara, A. Neural crest development and neuroblastoma: the genetic and biological link. Prog. Brain Res. 146, 231–242 (2004).

35. Tonini, G. P. et al. MYCN oncogene amplification in neuroblastoma is associated with worse prognosis, except in stage 4s: the Italian experience with 295 children. J. Clin. Oncol. 15, 85–93 (1997).

36. Iehara, T. et al. MYCN gene amplification is a powerful prognostic factor even in infantile neuroblastoma detected by mass screening. Br J Cancer 94, 1510–1515 (2006).

37. Chappell, J. & Dalton, S. Roles for MYC in the Establishment and Maintenance of Pluripotency. Cold Spring Harb. Perspect. Med. 3, a014381 (2013).

38. Esposito, M. R., Aveic, S., Seydel, A. & Tonini, G. P. Neuroblastoma treatment in the post-genomic era. (2017). doi:10.1186/s12929-017-0319-y

39. Mossé, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. doi:10.1038/nature07261

40. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

41. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

42. Liu, Z. & Thiele, C. J. ALK and MYCN: When Two Oncogenes Are Better than One. Cancer Cell (2012). doi:10.1016/j.ccr.2012.03.004

43. Iwahara, T. et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439–449 (1997).

44. Reiff, T. et al. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 138, 4699 LP-4708 (2011).

45. Azarova, A. M., Gautam, G. & George, R. E. Emerging importance of ALK in neuroblastoma. Seminars in Cancer Biology (2011). doi:10.1016/j.semcancer.2011.09.005

46. Umapathy, G. et al. The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci. Signal. 7, ra102 LP-ra102 (2014).

47. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

48. Bourdeaut, F. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Cancer Letters (2005). doi:10.1016/j.canlet.2005.01.055

49. Mosse, Y. P. et al. Germline PHOX2B Mutation in Hereditary Neuroblastoma. Am. J. Hum. Genet. 75, 727–730 (2004).

50. Trochet, D. et al. Germline Mutations of the Paired–Like Homeobox 2B (PHOX2B) Gene in Neuroblastoma. Am. J. Hum. Genet. (2004). doi:10.1086/383253

51. Catalano, V. et al. Tumor and its microenvironment: A synergistic interplay. Semin. Cancer 60

Biol. 23, 522–532 (2013).

52. Š‡˜‡‡ƒ—ǡǤƬƒ›‘”ǡǤ‡—”ƒŽ…”‡•–‹‰”ƒ–‹‘᩿ǣ‹–‡”’Žƒ›„‡–™‡‡…Š‡‘”‡’‡ŽŽ‡–•ǡ chemoattractants , contact inhibition , epithelial – mesenchymal transition , and collective cell migration. 1, (2012).

53. Gershan, J., Chan, A., Chrzanowska-wodnicka, M., Johnson, B. & Miao, Q. R. Endothelial and Accessory Cell Interactions in Neuroblastoma Tumor Microenvironment. intech

54. Vega-Lopez, G. A., Cerrizuela, S. & Aybar, M. J. Trunk neural crest cells: formation, migration and beyond. Int. J. Dev. Biol. 61, 5–15 (2017).

55. Saito, H., Yamamura, K. & Suzuki, N. Reduced bone morphogenetic protein receptor type 1A signaling in neural-crest-derived cells causes facial dysmorphism. Dis. Model.

& Mech. 5, 948 LP-955 (2012).

56. Saito, D., Takase, Y., Murai, H. & Takahashi, Y. The Dorsal Aorta Initiates a Molecular Cascade That Instructs Sympatho-Adrenal Specification. Science (80-. ). 336, 1578 LP-1581 (2012).

57. Lauzon, M.-A., Drevelle, O. & Faucheux, N. Peptides derived from the knuckle epitope of BMP-9 induce the cholinergic differentiation and inactivate GSk3beta in human SH-SY5Y neuroblastoma cells. Sci. Rep. 7, 4695 (2017).

58. Sumantran, V. N., Brederlau, A. & Funa, K. BMP-6 and retinoic acid synergistically differentiate the IMR-32 human neuroblastoma cells. Anticancer Res. 23, 1297–1303 (2003).

59. Kuriyama, S. & Mayor, R. Molecular analysis of neural crest migration. Philos. Trans. R. Soc. B Biol. Sci. 363, 1349 LP-1362 (2008).

60. Barbacid, M. The Trk family of neurotrophin receptors. J. Neurobiol. 25, 1386–1403 (1994).

61. STOLERU, B. et al. Tropomyosin-Receptor-Kinases Signaling in the Nervous System. Mædica 8, 43–48 (2013).

62. Borriello, L., Seeger, R. C., Asgharzadeh, S. & DeClerck, Y. A. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Letters (2016).

doi:10.1016/j.canlet.2015.11.017

63. Liu, S. et al. ‘Cross-talk’ between Schwannian stroma and neuroblasts promotes neuroblastoma tumor differentiation and inhibits angiogenesis. Cancer Lett. 228, 125– 131 (2005).

64. Zeine, R. et al. Presence of cancer-associated fibroblasts inversely correlates with Schwannian stroma in neuroblastoma tumors. Mod Pathol 22, 950–958 (2009).

65. Shiga, K. et al. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers (Basel). 7, 2443–2458 (2015).

66. Li, H., Fan, X. & Houghton, J. Tumor microenvironment: The role of the tumor stroma in cancer. Journal of Cellular Biochemistry (2007). doi:10.1002/jcb.21159

67. Mishra, P. J. et al. Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells. Cancer Res. 68, 4331 LP-4339 (2008).

68. Geminder, H. et al. A Possible Role for CXCR4 and Its Ligand, the CXC Chemokine Stromal Cell-Derived Factor-1, in the Development of Bone Marrow Metastases in Neuroblastoma. J. Immunol. 167, 4747 LP-4757 (2001).

69. Hashimoto, O. et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J. Pathol. 240, 211–223 (2016).

70. Dvorak, H. F., Weaver, V. M., Tlsty, T. D. & Bergers, G. Tumor microenvironment and progression. J. Surg. Oncol. 103, 468–474 (2011).

71. Perez-Moreno, M. & Fuchs, E. Catenins: Keeping Cells from Getting Their Signals Crossed. Dev. Cell 11, 601–612 (2006).

72. Mühlenhoff, M., Oltmann-Norden, I., Weinhold, B., Hildebrandt, H. & Gerardy-Schahn, R. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol. Chem. 390, 567–574 (2009).

73. Jin Yoon, K. & Danks, M. K. Cell adhesion molecules as targets for therapy of neuroblastoma. Cancer Biol. Ther. Biol. Ther. 84, (2009).

74. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

75. Lam, W. A. et al. Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression. Mol. Cancer 9, 35 (2010).

76. Ribatti, D., Alessandri, G., Vacca, A., Iurlaro, M. & Ponzoni, M. Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenicin vivo. Int. J. Cancer 77, 449–454 (1998).

77. Meitar, D., Crawford, S. E., Rademaker, A. W. & Cohn, S. L. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human

neuroblastoma. J. Clin. Oncol. 14, 405–414 (1996).

78. Rössler, J. et al. Angiogenesis as a target in neuroblastoma. Eur. J. Cancer 44, 1645–1656 (2008).

79. Seeger, R. C. Immunology and immunotherapy of neuroblastoma. Seminars in Cancer Biology (2011). doi:10.1016/j.semcancer.2011.09.012

80. PRIGIONE, I. et al. Immunogenicity of Human Neuroblastoma. Ann. N. Y. Acad. Sci. 1028, 69–80 (2004).

81. Weiss, W. a, Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–95 (1997).

82. Kiyonari, S. & Kadomatsu, K. Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin. Drug Discov. (2015). doi:10.1517/17460441.2015.974544 83. Heukamp, L. C. et al. Targeted Expression of Mutated ALK Induces Neuroblastoma in

Transgenic Mice. Sci. Transl. Med. 4, 141ra91-141ra91 (2012). 84. Zhu, S. & Look, A. T. Cancer and Zebrafish. 916, (2016).

85. Amatruda, J. F. & Patton, E. E. Chapter 1 Genetic Models of Cancer in Zebrafish. Int. Rev. Cell Mol. Biol. 271, 1–34 (2008).

86. Zhu, S. & Thomas Look, A. in (ed. Langenau, D. M.) 451–478 (Springer International Publishing, 2016). doi:10.1007/978-3-319-30654-4_20

87. White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13, 624–636 (2013).

88. Davison, J. M., Woo Park, S., Rhee, J. M. & Leach, S. D. Characterization of Kras-Mediated Pancreatic Tumorigenesis in Zebrafish. Methods Enzymol. 438, 391–417 (2008). 89. Zheng, W. et al. Xmrk, Kras and Myc Transgenic Zebrafish Liver Cancer Models Share

Molecular Signatures with Subsets of Human Hepatocellular Carcinoma. PLoS One 9, e91179 (2014).

90. Patton, E. E. & Zon, L. I. Taking Human Cancer Genes to the Fish: A Transgenic Model of Melanoma in Zebrafish. Zebrafish 1, 363–368 (2005).

91. Santoriello, C., Anelli, V., Alghisi, E. & Mione, M. Highly penetrant melanoma in a zebrafish model is independent of ErbB3b signaling. Pigment Cell Melanoma Res. 25, 287–289 (2012).

92. Zhu, S. et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell (2012). doi:10.1016/j.ccr.2012.02.010

93. Patterson, D. M. et al. in Current Protocols in Pharmacology 14.17.1-14.17.18 (John Wiley & Sons, Inc., 2011). doi:10.1002/0471141755.ph1417s52

94. Teitz, T. et al. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 6, e19133 (2011).

95. Khanna, C., Jaboin, J. J., Drakos, E., Tsokos, M. & Thiele, C. J. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo 16, 77–85 (2002).

96. Le Douarin, N. A biological cell labeling technique and its use in experimental embryology. Dev. Biol. 30, 217–222 (1973).

97. Le Douarin, N. M., Creuzet, S., Couly, G. & Dupin, E. Neural crest cell plasticity and its limits. Development 131, 4637 LP-4650 (2004).

98. Cimpean, A. M., Ribatti, D. & Raica, M. The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis 11, 311–319 (2008).

99. Oppitz, M. et al. Non-malignant migration of B16 mouse melanoma cells in the neural crest and invasive growth in the eye cup of the chick embryo. Melanoma Res. 17, 17–30 (2007).

100. Carter, R. et al. Exploitation of chick embryo environments to reprogram MYCN-amplified neuroblastoma cells to a benign phenotype, lacking detectable MYCN expression.

Oncogenesis 1, e24 (2012).

101. Le Douarin, N. M. The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech. Dev. 121, 1089–1102 (2004).

102. Bronner, M. E. & LeDouarin, N. M. Development and evolution of the neural crest: An overview. Dev. Biol. 366, 2–9 (2012).

103. Baker, C. V. H. & Bronner-Fraser, M. The origins of the neural crest. Part I: embryonic induction. Mech. Dev. 69, 3–11 (1997).

104. Baker, C. V. H. & Bronner-Fraser, M. The origins of the neural crest. Part II: an evolutionary perspective. Mech. Dev. 69, 13–29 (1997).

105. Duband, J.-L., Dady, A. & Fleury, V. Resolving Time and Space Constraints During Neural Crest Formation and Delamination. Curr. Top. Dev. Biol. 111, 27–67 (2015).

106. HORSTADIUS, S. The mechanics of sea urchin development. Annee Biol. 26, 381–98 (1950).

107. Weston, J. A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 6, 279–310 (1963).

108. Delalande, J.-M., Thapar, N. & Burns, A. J. Dual Labeling of Neural Crest Cells and Blood Vessels Within Chicken Embryos Using ChickGFP Neural Tube Grafting and Carbocyanine Dye DiI Injection. e52514 (2015). doi:doi:10.3791/52514

109. Zhang, D. et al. The neural crest: A versatile organ system. Birth Defects Res. Part C - Embryo Today Rev. 102, 275–298 (2014).

110. Ayer-Le Lievre, C. S. & Le Douarin, N. M. The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras. Dev. Biol. 94, 291–310 (1982).

111. Lwigale, P. Y., Conrad, G. W. & Bronner-Fraser, M. Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis. Development 131, 1979 LP-1991 (2004).

112. Calloni, G. W., Glavieux-Pardanaud, C., Le Douarin, N. M. & Dupin, E. Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proc. Natl. Acad. Sci. 104, 19879–19884 (2007). 113. McGonnell, I. M. & Graham, A. Trunk Neural Crest Has Skeletogenic Potential. Curr. Biol.

12, 767–771 (2002).

114. ›„ƒ”ǡǤǤƬƒ›‘”ǡǤƒ”Ž›‹†—…–‹‘‘ˆ‡—”ƒŽ…”‡•–…‡ŽŽ•᩿ǣŽ‡••‘•Ž‡ƒ”‡†ˆ”‘ˆ”‘‰ǡ fish and chick. 452–458 (2002).

115. Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9, 557–568 (2008).

116. Prasad, M. S., Sauka-Spengler, T. & LaBonne, C. Induction of the neural crest state: Control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic

interactions. Dev. Biol. 366, 10–21 (2012).

117. Simoes-Costa, M. & Bronner, M. E. Reprogramming of avian neural crest axial identity and cell fate. Science (80-. ). 352, 1570 LP-1573 (2016).

118. Villanueva, S., Glavic, A., Ruiz, P. & Mayor, R. Posteriorization by FGF, Wnt, and Retinoic Acid Is Required for Neural Crest Induction. Dev. Biol. 241, 289–301 (2002).

119. Milet, C. & Monsoro-Burq, A. H. Neural crest induction at the neural plate border in vertebrates. Dev. Biol. 366, 22–33 (2012).

120. Kerosuo, L. & Bronner-Fraser, M. What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Semin. Cell Dev. Biol. 23, 320–332 (2012).

121. Nieto, M. A. Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol. 53, 1541–7 (2009).

122. Thiery, J. P. Epithelial–mesenchymal transitions in development and pathologies. Curr. 63

Opin. Cell Biol. 15, 740–746 (2003).

123. Taneyhill, L. A. To adhere, or not to adhere: The role of Cadherins in neural crest development. Cell Adh. Migr. 2, 223–230 (2008).

124. Giovannone, D. et al. Slits affect the timely migration of neural crest cells via robo receptor. Dev. Dyn. (2012). doi:10.1002/dvdy.23817

125. Tseng, R.-C. et al. SLIT2 Attenuation during Lung Cancer Progression Deregulates Ⱦ-Catenin and E-Cadherin and Associates with Poor Prognosis. Cancer Res. 70, 543 LP-551 (2010).

126. Tosney, K. W. & Oakley, R. A. The perinotochordal mesenchyme acts as a barrier to axon advance in the chick embryo: Implications for a general mechanism of axonal guidance. Exp. Neurol. 109, 75–89 (1990).

127. Krull, C. E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

128. Koblar, S. A. et al. Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite. J. Neurobiol. 42, 437–47 (2000). 129. Young, H. M., Anderson, R. B. & Anderson, C. R. Guidance cues involved in the

development of the peripheral autonomic nervous system. Autonomic Neuroscience: Basic and Clinical (2004). doi:10.1016/j.autneu.2004.02.008

130. Dickson, B. J. & Gilestro, G. F. Regulation of Commissural Axon Pathfinding by Slit and its Robo Receptors. Annu. Rev. Cell Dev. Biol. 22, 651–675 (2006).

131. Jia, L., Cheng, L. & Raper, J. Slit / Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. 282, 411–421 (2005).

132. Bellard, M. E. De, Rao, Y. & Bronner-fraser, M. Dual function of Slit2 in repulsion and enhanced migration of trunk , but not vagal , neural crest cells. 162, 269–279 (2003). 133. Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of

transmembrane and secreted growth cone guidance molecules. Cell 75, 1389–1399 (1993).

134. Roth, L. et al. The many faces of semaphorins: from development to pathology. Cell. Mol. Life Sci. 66, 649 (2008).

135. Chen, H., He, Z., Bagri, A. & Tessier-Lavigne, M. Semaphorin–Neuropilin Interactions Underlying Sympathetic Axon Responses to Class III Semaphorins. Neuron 21, 1283–1290 (1998).

136. He, Z., Wang, K. C., Koprivica, V., Ming, G. & Song, H.-J. Knowing How to Navigate:

Mechanisms of Semaphorin Signaling in the Nervous System. Sci. STKE 2002, re1 LP-re1 (2002).

137. Gammill, L. S., Gonzalez, C., Gu, C. & Bronner-Fraser, M. Guidance of trunk neural crest migration requires neuropilin 2/semaphorin 3F signaling. Development 133, 99 LP-106 (2005).

138. Shepherd, I., Luo, Y., Raper, J. A. & Chang, S. The Distribution of Collapsin-1 mRNA in the Developing Chick Nervous System. Dev. Biol. 173, 185–199 (1996).

139. Huber, K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev. Biol. 298, 335–43 (2006).

140. Erwin, D. H. & Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10, 141–148 (2009).

141. Bhatt, S., Diaz, R. & Trainor, P. A. Signals and Switches in Mammalian Neural Crest Cell Differentiation. 1–20

142. Patzke, H., Reissmann, E., Stanke, M., Bixby, J. L. & Ernsberger, U. BMP growth factors and Phox2 transcription factors can induce synaptotagmin I and neurexin I during

sympathetic neuron development. Mech. Dev. 108, 149–159 (2001).

143. Klagsbrun, M., Sasse, J., Sullivan, R. & Smith, J. A. Human tumor cells synthesize an

endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc. Natl. Acad. Sci. U. S. A. 83, 2448–2452 (1986).

144. Bao, C., Wang, J., Ma, W., Wang, X. & Cheng, Y. HDGF: a novel jack-of-all-trades in cancer. Futur. Oncol. 10, 2675–2685 (2014).

145. Gómez, E. et al. Hepatoma-derived growth factor: From the bovine uterus to the in vitro embryo culture. Reproduction (2014). doi:10.1530/REP-14-0304

146. Oliver, J. A. & Al-Awqati, Q. An endothelial growth factor involved in rat renal development. J. Clin. Invest. 102, 1208–1219 (1998).

147. Gómez, E. et al. Hepatoma-derived growth factor: Protein quantification in uterine fluid, gene expression in endometrial-cell culture and effects on in vitro embryo development, pregnancy and birth. Theriogenology 96, 118–125 (2017).

148. Enomoto, H. et al. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology (2002).

doi:10.1053/jhep.2002.36935

149. El-Tahir, H. M. et al. Expression of Hepatoma-derived growth factor family members in the adult central nervous system. BMC Neurosci. 7, 6 (2006).

150. Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H. & McNamara, C. A. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J. Clin. Invest. 105, 567–75 (2000).

151. Enomoto, H., Nakamura, H., Liu, W. & Nishiguchi, S. Hepatoma-Derived Growth Factor: Its Possible Involvement in the Progression of Hepatocellular Carcinoma. International Journal of Molecular Sciences 16, (2015).

152. Hu, T. et al. The Expression and Prognostic Role of Hepatoma-derived Growth Factor in Colorectal Stromal Tumors. Dis. Colon &amp 52, 319–326 (2009).

153. Zhang, J., Chen, N., Qi, J., Zhou, B. & Qiu, X. HDGF and ADAM9 are novel molecular staging biomarkers, prognostic biomarkers and predictive biomarkers for adjuvant

chemotherapy in surgically resected stage I non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 140, 1441–1449 (2014).

154. Song, Y. et al. A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma. J. Neurooncol. 119, 285–295 (2014).

155. Tsai, H. E. et al. Up-Regulation of Hepatoma-Derived Growth Factor Facilities Tumor Progression in Malignant Melanoma. PLoS One (2013).

doi:10.1371/journal.pone.0059345

156. Everett, A. D., Stoops, T. & McNamara, C. A. Nuclear Targeting is Required for Hepatoma-derived Growth Factor-stimulated Mitogenesis in Vascular Smooth Muscle Cells. J. Biol. Chem. 276, 37564–37568 (2001).

157. Zhou, Z. et al. Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus. J. Biol. Chem. 279, 27320–6 (2004).

158. Enomoto, H. et al. Hepatoma-derived growth factor is induced in liver regeneration. doi:10.1111/j.1872-034X.2009.00532.x

159. Enomoto, H. et al. Down-regulation of HDGF Inhibits the Growth of Hepatocellular Carcinoma Cells In Vitro and In Vivo. Anticancer Res. 35, 6475–9 (2015).

Documents relatifs