• Aucun résultat trouvé

In this appendix we provide a glossary of the variables used in the text. For most terms we give a short explanation and refer to the equation or section where this variable is rst used. Usually it is dened there. If not, this should be a very common variable found, e.g., in most basic text books on general relativity (like the Christoel symbols, the Riemann tensor and so on).

A

Perturbation of the 00 component of the metric, respectively the lapse function (2.4),(2.11), Appendix A.

B

Scalar perturbation of the 0

i

component of the metric, respectively the shift vector (2.5),(2.11).

B

i Vector perturbation of the 0

i

component of the metric, respectively the shift vector (2.7),(2.12).

B

ij Magnetic part of the Weyl tensor (2.27).

C

=

R

?(1

=

2)(

g

R

?+

g

R

?

g

R

?

g

R

) +R6(

g

g

?

g

g

), Weyl tensor (2.26,27).

D

() Gauge invariant density perturbation variable for the matter component

(2.38).

D

()g Gauge invariant density perturbation variable for the matter component

(2.37).

D

()s Gauge invariant density perturbation variable for the matter component

(2.36).

E

ij Electrical part of the Weyl tensor (2.26).

F

Gauge dependent perturbation variable for the distribution function, paragraph (2.3.1).

F(S) Gauge invariant perturbation variable for scalar perturbations of the distribution function (2.69).

F(T) Gauge invariant perturbation variable for tensor perturbations of the distribution function, paragraph (2.3.2).

F(V ) Gauge invariant perturbation variable for vector perturbations of the distribution function, paragraph (2.3.2).

G

Newtons constant,

G

= 6

:

672010?8

cm

3

g

?1

sec

?2.

G

=

R

?(1

=

2)

g

R

, Einstein tensor.

H

L Trace perturbation of the spatial part of the metric.

H

T Anisotropic scalar perturbation of the spatial part of the metric (2.6,11).

H

i Anisotropic vector perturbation of the spatial part of the metric (2.8,12).

H

ij Anisotropic tensor perturbation of the spatial part of the metric (2.9,13).

K

ij Second fundamental form, Section 2.1, Appendix A.

L

i Spatial components of the vector eld

X

parametrizing a gauge transformation, Section 2.1, 2.3.

L

X Lie derivative w.r.t the vector eld

X

, Section 2.3.

M

Mass used to parametrize the energy momentum tensor of seed perturbations, Section 2.5.

M Gauge invariant perturbation variable for the energy integrated photon distribution (2.83).

M Spacetime manifold, Appendix A, Section 2.3

M

i = 43 R

d

iM The rst moment ofM(3.19).

M

ij = 83 R

d

ijMThe second moment of M(3.17).

P

=

u

u

+

The projection operator onto the 3{space orthogonal to

u

(2.30).

P

m The mass bundle, Section 2.3

R

The Ricci scalar.

R

= 3

m

=

4

r Parameter used in paragraph 3.2.3.

R Perturbation of the scalar curvature on the slices of constant time (2.14).

R

=

R

The Ricci tensor.

R

The Riemann tensor

T

Temperature of the cosmic background radiation.

T

Temporal component of the vector eld

X

parametrizing a gauge transformation, Section 2.1, 2.3.

T

M Tangent space to spacetime, Section 2.3.

TX

Tangent vector eld associated to the vector eld

X

, Section 2.3.1

T

(sS) Scalar contribution to the energy momentum tensor of the seeds (2.117,118,119).

T

(sT) Tensor contribution to the energy momentum tensor of the seeds (2.122).

T

(sV ) Vector contribution to the energy momentum tensor of the seeds (2.120,121).

V

Gauge invariant variable for scalar perturbations of the velocity eld (2.35).

V

i Gauge invariant variable for vector perturbations of the velocity eld (2.42).

X

Vector eld parametrizing a gauge transformation, Section 2.1, 2.3.

@

= @x@ Partial derivative (vector eld)

a

Cosmic scale factor, Section 1.1.

b

Impact parameter, Section 3.4, 4.2.2.

c

Speed of light, usually set equal to 1 in this text.

c

s=p

p=

_

_ , (

c

=p

p

_

=

_) Adiabatic sound speed (of matter component

), Section 1.1.

e

Tetrad vector eld, Section 2.3, Appendix A.

f

Distribution function of phase space, Section 2.3.

f

Gauge invariant scalar potential parametrizing anisotropic stresses of seeds (2.119).

f

Gauge invariant perturbation variable parametrizing the energy density of seeds (2.117).

f

p Gauge invariant perturbation variable parametrizing the pressure of seeds (2.119).

f

v Gauge invariant perturbation variable parametrizing the scalar velocity potential of seeds (2.118).

g

Metric of spacetime, Chapter 2.

h

Used to parametrize Hubble's constant

H

0 =

h

100secMpckm , Section 1.1.

h

Metric perturbation (2.10).

h

Planck's constant,

h

= 1

:

054610?27

cm

2

gsec

?1, usually set equal to 1 in this text.

k

Spatial curvature of a Friedmann universe (1.1).

k

Comoving wave number, Section 3.2, paragraph 3.4.2.

k

B Boltzmann's constant,

k

B= 1

:

380710?16

erg=K

, usually set equal to 1 in this text.

l

Length introduced to keep perturbation variables dimensionless, in applications it may be set equal to a typical scale of perturbations, Section 2.1.

l

H =

t

Comoving size of the horizon, Section 1.3.

q

Redshift corrected energy, paragraph 2.3.1.

t

Conformal time, Section 1.1.

t

T Conformal Thomson mean free path, Section 3.2.

u

Energy velocity eld, Section 2.1

v

Scalar velocity potential Section 2.1.

v

Redshift corrected momentum, paragraph 2.3.1.

v

i Vector peculiar velocity eld, Section 2.1.

w

Enthalpy, Section 1.1.

w

i() Gauge invariant vector potential parametrizing anisotropic stresses of seeds (2.121).

w

i(v) Gauge invariant vector contribution to the energy ow of seeds (2.120).

z

Cosmological redshift.

? Gauge invariant entropy perturbation variable, Section 2.1.

? Christoel symbols, Section 2.3.

Laplacian.

Cosmological constant (1.1).

Gauge invariant scalar potential for anisotropic stresses, Section 2.1.

i Gauge invariant vector potential for anisotropic stresses, Section 2.1.

ij Gauge invariant tensor contribution to anisotropic stresses, Section 2.1.

Three dimensional spatial hypersurface, Appendix A.

Gauge invariant scalar potential for geometry perturbations (2.24).

Gauge invariant scalar potential for geometry perturbations (2.25).

i Gauge invariant perturbation variable for the uid vorticity (2.43).

Curvature 2{form, Appendix A.

Lapse function (2.4), Appendix A.

Shift vector (2.5), Appendix A.

ij Metric of a three space of constant curvature, Section 1.1.

Gauge dependent density perturbation (2.28).

i Spatial unit vector (e.g. denoting photon directions), Section 2.3.

= 4

GM

2 Smallness parameter for the amplitude of seed perturbations, paragraph 2.5.2.

ijk Three dimensional totally antisymmetric tensor (2.27).

ij=

i

j?

ij , Section 3.2.

Symmetry breaking scale (4.1).

Orthonormal tetrad of 1{forms, Appendix A.

#

i Orthonormal triad of 1{forms on the hypersurfaces of constant time, Appendix A.

Isomorphism between the perturbed and unperturbed mass bundles, Section 2.3.

Gauge dependent perturbation variable for the energy integrated photon distribution para-graph (2.3.4).

Parameter in the scalar eld potential (4.1).

= (1 +

kr

2

=

4)?1 Conformal factor for the metric of a 3 space of constant curvature, Section 2.3.

Cosine between the photon direction and the radial direction, paragraph 3.2.1.

Orthonormal momentum components Section 2.3.

ij Anisotropic stresses (2.31).

L Gauge dependent pressure perturbation variable (2.31).

(),

() Background energy density of component

.

Scalar potential for the shear of the equal time hypersurfaces, extrinsic curvature (2.15).

i Vector potential for the shear of the equal time hypersurfaces, extrinsic curvature (2.17).

T Thomson cross section,

T = 6

:

652410?25

cm

2.

Physical time, Section 1.1.

Impact time (4.30)

Optical depth, Section 5.1.

Stress tensor (2.30).

Scalar eld, Chapter 4.

Variable parametrizing spherically symmetric scalar eld congurations (4.4).

!

Winding number density of the scalar eld, Section 4.1.

!

Connection forms, Appendix 1.

!

ij Vorticity of a velocity eld Section 2.1.

Bibliography

[Abramowitz and Stegun, 1970] Abramowitz, M. and I.A. Stegun (1970). Handbook of Mathemat-ical Functions, 9th ed., Dover Publications, New York.

[Albrecht and Steinhardt, 1982] Albrecht, A. and P.J. Steinhardt (1982). Phys. Rev. Lett.

48

, 1220.

[Albrecht and Turok, 1989] Albrecht, A. and N. Turok (1989). Phys. Rev.

D40

, 973 and ref-erences therein.

[Alpher et al. 1948] Alpher, R.A., H. Bethe and G. Gamov (1948). Phys. Rev.

73

, 803.

[Aminneborg, 1992] Aminneborg, S. (1992). Nucl. Phys.

B388

, 521.

[Bahcall, 1989] Bahcall, N. (1989). Ann. Rev. Astron. Astrophys.

26

, 631.

[Bahcall and Soneira, 1983] Bahcall, N. and R.M. Soneira (1983). Ap. J.

270

, 20.

[Bardeen, 1980] Bardeen, J. (1980). Phys. Rev.

D22

, 1882.

[Bardeen et al., 1986] Bardeen, J.M., J.R. Bond, N. Kaiser and A.S. Szalay (1986). Ap.

J.

304

, 15.

[Barriola and Vilenkin, 1989] Barriola, M. and A. Vilenkin (1986). Phys. Rev. Lett.

63

, 341.

[Bartlett et al., 1993] Bartlett, J., A.K. Gooding, and D.N. Spergel (1993). Ap. J.

403

, 1.

[Bennett and Bouchet, 1990] Bennett, D.P. and F. Bouchet (1990). Phys. Rev.

D41

, 2408 and references therein.

[Bennett and Bouchet, 1992] Bennett, D.P. and F. Bouchet (1992). Livermore Nat. Lab.

Preprint.

[Bennett and Rhie, 1990] Bennett, D.P. and S.H. Rhie (1990). Phys. Rev. Lett.

67

, 1709.

[Bennett and Rhie, 1992] Bennett, D.P. and S.H. Rhie (1992). Livermore Nat. Lab. Preprint, UCRL-JC-111244.

[Bertschinger, 1987] Bertschinger, E. (1987). Ap. J.

316

, 489.

[Birkinshaw et al., 1991] Birkinshaw, M., J.P. Huges and K.A. Arnaud (1991). Ap. J.

379

, 466.

[Birrell and Davies, 1982] Birrell, N. and P. Davies (1982). Quantum Fields in Curved Space, Cambridge University Press.

[Borner, 1988] Borner, G. (1988). The Early Universe: Facts and Fiction, Springer Verlag, Berlin.

[Boesgaard and Steigman, 1985] Boesgaard, A.M. and G. Steigman (1985). Ann. Rev. Astron. As-trophys.

23

, 319.

[Bond et al., 1980] Bond, J.R., G. Efstathiou and J. Silk (1980). Phys. Rev. Lett.

45

, 1980.

[Bond and Szalay, 1983] Bond, J.R. and A.S. Szalay (1983). Ap. J.

274

, 443.

[Bondi, 1960] Bondi, H. (1960). Cosmology, Cambridge University Press, Cam-bridge.

[Borill et al., 1991] Borill, J., E. Copeland and A. Liddle (1991). Phys. Lett.

B258

, 310.

[Broadhurst et al., 1990] Broadhurst, T.J., R.S. Ellis, D.C Koo and A.S. Scalay (1990).

Nature

343

, 726.

[Bruni et al., 1992a] Bruni, M., G. Ellis and P.K.S. Dunsby (1992). Class. Quantum Grav.

9

, 921.

[Bruni et al., 1992b] Bruni, M., P.K.S. Dunsby and G. Ellis (1992). Ap. J

395

, 34.

[Bunch and Davies, 1978] Bunch, T. and P.C.W. Davies (1978). Proc. Roy. Soc. London

A360

, 117.

[Carter, 1990] Carter, B. (1990). Phys. Rev.

D41

, 3886.

[Carignan and Freeman, 1988] Carignan, C. and K.C. Freeman (1988). Ap. J.

332

, L33.

[Cen, 1992] Cen, R.Y. (1992). Ph. D. Thesis, Princeton University, Dept. of Astrophysical Sciences.

[Cen and Ostriker, 1992] Cen, R.Y. and J. Ostriker (1992). Ap. J

399

, L113.

[Cen et al., 1990] Cen, R.Y., A. Jameson, F. Liu and J.P. Ostriker (1990). Ap. J

326

, L41.

[Cen et al., 1991] Cen, R.Y., J.P. Ostriker, D.N. Spergel and N. Turok (1991). Ap.

J.

383

, 1.

[Centrella and Melott, 1982] Centrella, J. and A. Melott (1982). Nature

305

, 196.

[Choquet-Bruhat and York, 1980] Choquet-Bruhat, Y. and J.W. York (1980). In A. Held (Ed.), General Relativity and Gravitation. Vol. I

[Chuang et al., 1991] Chuang, I., R. Durrer, N. Turok and B. Yurke, (1991). Science

251

, 1336.

[Coleman and Pietronero, 1992] Coleman, P.H. and L. Pietronero (1992). Phys. Rep.

213

, 313.

[Dalten et al., 1991] Dalten, G.B., G. Efstathiou and S.J. Maddox (1991), preprint.

[Davis et al., 1985/87] Davis, M., G. Efstathiou, C. Frenk and S.D.M. White (1985). Ap.

J

292

, 371; and (1987).Nature

330

, 451.

[Davis et al., 1988] Davis, M., G. Efstathiou, C. Frenk and S.D.M. White (1988). Ap.

J

327

, 507.

[Davis et al., 1988] Davis, M., A. Meiksin, M.A. Strauss, L.N. da Costa and A. Yahil (1988). Ap. J. Lett.

333

, L9.

[De Lapparent et al., 1986] De Lapparent, V., M.J. Geller and J.P. Huchra (1986). Ap. J. Lett.

302

, L1.

[De Lapparent et al., 1988] De Lapparent, V., M.J. Geller and J.P. Huchra (1988). Ap. J.

332

, 44.

[Derrick, 1964] Derrick, G.H. (1964). J. Math. Phys.

5

, 1252.

[Doroshkevich et al., 1980] Doroshkevich, A.G., Y.B. Zel'dovich, R.A. Sunyaev (1980). Sov.

Astron. Lett.

6

, 252.

[Dunsby et al., 1992] Dunsby, P.K.S., M. Bruni and G. Ellis (1992). In press.

[Durrer, 1988] Durrer, R. (1988). Ph. D. Dissertation, University of Zurich.

[Durrer, 1989a] Durrer, R. (1989). Astron. Astrophys.

208

, 1.

[Durrer, 1989b] Durrer, R. (1989). Nucl. Phys.

B328

, 238.

[Durrer, 1990] Durrer, R. (1990). Phys. Rev.

D42

, 2533.

[Durrer et al., 1991] Durrer, R., M. Heusler, P. Jetzer and N. Straumann (1991). Phys.

Lett.

B259

, 48.

[Durrer et al., 1992a] Durrer, R., M. Heusler, P. Jetzer and N. Straumann (1992). Nucl.

Phys.

B368

, 527.

[Durrer and Kovner, 1990] Durrer, R. and I. Kovner (1990). Ap. J.

356

, 49.

[Durrer and Spergel, 1991] Durrer, R. and D.N. Spergel (1991). In D. Cline and R. Peccei (Eds.) Santa Monica Astropart. '90, World Scientic, 288.

[Durrer et al., 1993] Durrer, R., A. Howard and Z.{H. Zhou (1993). Phys. Rev. D in print.

[Durrer and Straumann, 1988] Durrer, R. and N. Straumann (1988). Helv. Phys. Acta

61

1027.

[Ehlers and Rindler, 1989] Ehlers, J. and W. Rindler (1989). Mon. Not. Roy. ast. Soc.

238

, 195.

[Einasto et al., 1986] Einasto, J., A.A. Klypin and E. Saar (1986). Mon. Not. Roy. ast.

Soc.

248

, 593.

[Ellis and Bruni, 1989] Ellis, G. and M. Bruni (1989). Phys. Rev.

D40

, 1804.

[Ellis et al., 1989] Ellis, G., M. Bruni and J. Hwang (1989). Phys. Rev.

D40

, 1819.

[Fischer and Marsden, 1979] Fischer, A.E. and J.E. Marsden (1979). In S. Hawking and W.

Israel (Eds.) General Relativity, an Einstein Centenary Survey, Cambridge University Press, Cambridge.

[Fischler et al., 1985] Fischler, W., B. Ratra and L. Susskind (1985). Nucl. Phys.

B259

, 730.

[Fisher et al., 1993] Fisher, K.B., M. Davis, M.A. Strauss, A. Yahil and J. Huchra (1993). Ap. J.

402

, 42.

[Gaier et al., 1992] Gaier, T., J. Schuster, J. Gundersen, T. Koch, M. Seiert, P. Mein-hold and P. Lubin (1992). Ap. J.

398

, L1.

[Gamov, 1946] Gamov, G. (1946). Phys. Rev.

70

, 572.

[Geller and Huchra, 1989] Geller, M.J. and J.P. Huchra (1989). Science

246

, 897.

[Gerlach and Sengupta, 1978] Gerlach, U. and U. Sengupta (1978). Phys. Rev.

D18

, 1789.

[Gooding et al., 1991] Gooding, A., D.N. Spergel and N. Turok (1991). Ap. J.

372

, L5.

[Gooding et al., 1992] Gooding, A., C.B. Park, D.N. Spergel, N. Turok and R. Gott III (1992). Ap. J.

393

, 42.

[Gott et al., 1986] Gott, J.R., A.L. Melott and M. Dickinson (1986). Ap. J.

306

, 341.

[Gouda et al., 1989] Gouda, N., M. Sasaki and Y. Suto (1989). Ap. J.

341

, 557.

[Gouda et al., 1991] Gouda, N., N. Sugiyama and M. Sasaki (1991). Prog. Theor. Phys.

85

, 1023.

[Guth, 1981] Guth, A.H. (1981). Phys. Rev.

D23

, 347.

[Guth and Pi, 1982] Guth, A.H. and S.{Y. Pi (1982). Phys. Rev. Lett.

49

, 1110.

[Harrison, 1970] Harrison, E.R. (1970). Phys. Rev.

D1

, 2726.

[Hawking, 1966] Hawking, S.W. (1966). Ap. J.

145

, 544.

[Hawking, 1982] Hawking, S.W. (1982). Phys. Lett.

B115

, 295.

[Hogan, 1983] Hogan, C.J. (1983). Mon. Not. Roy. ast. Soc.

202

, 1101.

[Holtzman, 1989] Holtzman, J.A. (1989). Ap. J. Suppl.

71

1.

[Hubble, 1927] Hubble, E.P. (1927). Proc. Nat. Acad. Sci.

15

, 168.

[Hwang and Vishniac, 1989] Hwang J. and E. Vishniac (1989). Ap. J.

353

, 1.

[Kaiser, 1985] Kaiser, N. (1985). Ap. J.,

284

, L9.

[Kasai and Tomita, 1986] Kasai, M. and K. Tomita (1986). Phys. Rev.

D33

, 1576.

[Kibble, 1978] Kibble, T.W.B. (1978). J. Phys.

A

, 1387.

[Kibble, 1980] Kibble, T.W.B. (1980). Phys. Rep.

67

, 183.

[Kodama and Sasaki, 1984] Kodama, H. and M. Sasaki (1984). Prog. Theor. Phys. Suppl

78

. [Kolb and Turner, 1990] Kolb, E.W. and M.S. Turner (1990). The Early Universe, Addison

Wesley, Redwood City.

[Kurki{Suonio et al., 1988] Kurki{Suonio, H., R.A. Matzner, J.M. Centrella, T. Rothman and J.R. Wilson (1988). Phys. Rev.

D38

, 1091.

[La and Steinhardt, 1989] La D. and P.J. Steinhardt,Phys. Rev. Lett.

62

, 376 (1989);

|| Phys. Lett.

220B

, 375 (1989).

[Leese and Prokopec, 1991] Leese, R.A. and T. Prokopec (1991). Phys. Rev.

44

, 3749.

[Lifshitz, 1946] Lifshitz, E.M. (1946). Soviet J. Phys. (JETP)

10

, 116.

[Lifshitz and Pitajewski, 1983] Lifshitz, E.M. and L.P. Pitajewski (1983). Lehrbuch der Theoreti-schen Physik, Band X, Akademie Verlag Berlin.

[Linde, 1982] Linde, A.D. (1982). Phys. Lett.

B108

, 389.

[Linde, 1983] Linde, A.D. (1983). Phys. Lett.

B129

, 177.

[Linde, 1984] Linde, A.D. (1984). Rep. Prog. Phys.

47

, 925.

[Linde, 1990] Linde, A.D. (1990).Particle Physics and Inationary Cosmology, Harwood, NJ .

[Loveday et al., 1992a] Loveday, J., G. Efstathiou, B.A. Peterson and S.J. Maddox (1992).

Ap. J.

400

L43.

[Loveday et al., 1992b] Loveday, B.A. Peterson, J. G. Efstathiou and S.J. Maddox (1992).

Ap. J.

390

338.

[Maddox et al., 1990] Maddox, S.J., G. Efstathiou, W.J. Sutherland and J. Loveday (1990). Mon. Not. R. astr. Soc.,

242

, Short Comm., 43.

[Magueijo, 1992] Magueijo, J.C.R. (1992). Phys. Rev.

D46

, 1368 and 3360.

[Mather et al., 1990] Mather, J.C. et al. (1990). Ap. J.

354

, L37.

[Mather et al., 1993] Mather, J.C. et al. (1993). COBE Preprint.

[McHardy et al., 1990] McHardy, I.M., G.C. Stewart, C.A. Edge, B. Cook, K. Yamashita and I. Hatsukade (1990). Mon. Not. Roy. ast. Soc.

242

, 215.

[McKee and Ostriker, 1988] McKee, P. and J. Ostriker (1988). Rev. Mod. Phys..

[Mezaros, 1974] Mezaros, P. (1974). Astron. Astrophys.

37

, 225.

[Mukhanov et al., 1992] Mukhanov, V.F., H.A. Feldman and R.H. Brandenberger (1992).

Phys. Rep.

215

203.

[Novikov, 1965] Novikov, I.D. (1965). Soviet Astron.

8

, 857.

[Olive, 1990] Olive, K. (1990). Phys. Rep.

190

, 368.

[Ostriker, 1992] Ostriker, J.P. (1992). Princeton Observatory Preprint.

[Ostriker and Cowie, 1981] Ostriker, J.P. and L. Cowie (1981). Ap. J

243

, L127.

[Ostriker and Suto, 1990] Ostriker, J.P. and Y. Suto (1990). Ap. J.

348

, 378.

[Ostriker et al., 1986] Ostriker, J.P., C. Thompson and E. Witten (1986). Phys. Lett.

B180

, 231.

[Park et al., 1991] Park, C.B., D.N. Spergel and N. Turok (1991). Ap. J.

372

, L35.

[Peebles, 1971] Peebles, P.J.E. (1971). Physical Cosmology, Princeton University Press, Princeton.

[Peebles, 1980] Peebles, P.J.E. (1980). The Large Scale Structure of the Universe, Princeton University Press.

[Peebles, 1987] Peebles, P.J.E. (1987). Nature

327

, 210.

[Peebles, 1988] Peebles, P.J.E. (1988). In D.R. Altschuler and J.F. Nieves (Eds.), Cosmology and Elementary Particle Physics, World Scientic.

[Peebles, 1993] Peebles, P.J.E. (1993). Principles of Physical Cosmology, Prince-ton University Press.

[Peebles and Silk, 1990] Peebles, P.J.E. and J. Silk (1990). Nature

436

, 233.

[Pen et al., 1993] Pen, Ue{Li, D.N. Spergel and N. Turok (1993). Princeton Obser-vatory Preprint, POP{485.

[Penzias and Wilson, 1965] Penzias, A.A. and R.W. Wilson (1965). Ap. J.

142

, 419.

[Perivolaropoulos, 1993] Perivolaropoulos, L. (1993). Phys. Lett.

B298

, 305.

[Perivolaropoulos et al., 1990] Perivolaropoulos, L., R. Brandenberger and A. Stebbins, (1990).

Phys. Rev.

D41

, 1764.

[Pietronero, 1987] Pietronero, L. (1987). Physica

A144

, 257.

[Polarski and Starobinsky, 1992] Polarski, D. and A.A. Starobinsky (1992). ETH Zurich Preprint, ETH{TH/92-7.

[Rees and Sciama, 1968] Rees, M. and D. Sciama (1968). Nature

217

, 511.

[Rubin, 1983] Rubin, V. (1983). Science

220

, 1339.

[Sachs and Wolfe, 1967] Sachs, R.K. and A.M. Wolfe (1967). Ap. J.

147

, 73.

[Saunders et al., 1991] Saunders, W., C. Frenk, M. Rowan{Robinson, G. Efstathiou, A.

Lawrence, N. Kaiser, R. Ellis, J. Crawford, X. Xia and I. Parry (1991). Nature

349

, 32.

[Sciama, 1971] Sciama D.W.(1971). Modern Cosmology, Cambridge University Press, Cambridge.

[Smoot et al., 1991] Smoot, G.F., Bennett, C.L., Kogut, A., Aymon, J., Backus, C., De Amici, G., Galuk, K., Jackson, P.D., Keegstra, P., Rokke, L., Tenorio, L., Sottes, S., Gulkis, S., Hauser, M.G., Jannsen, M.A., Cheng, E.S.,Kelsall, T., Lubin, P., Meyer, S., Moseley, S.H., Mur-dock, T.L., Shafer, R.A., Silverberg, R.F. (1991). Ap. J.

371

, L1.

[Smoot et al., 1992] Smoot, G.F. et al. (1992). Ap. J.

396

, L1.

[Spergel et al., 1991] Spergel, D.N., N. Turok, W.H. Press and B.S. Ryden (1991). Phys.

Rev.

D43

, 1038.

[Starobinsky, 1982] Starobinsky, A.A. (1982). Phys. Lett.

B117

, 175.

[Steinhardt, 1993] Steinhardt P.J. (1993). Classical and Quantum Gravity

10

, S33.

[Stewart, 1971] Stewart, J.M. (1971). Non-Equilibrium Relativistic Kinetic The-ory, Springer Lecture Notes in Physics, Vol. 10, ed. J. Ehlers, K.

Hepp and H.A. Wiedenmuller.

[Stewart and Walker, 1977] Stewart, J.M. and M. Walker (1974). Proc. R. Soc. London

A341

, 49.

[Straumann, 1985] Straumann, N. (1985). General Relativity and Astrophysics, Springer Verlag, Berlin.

[Stebbins, 1988] Stebbins A. (1988). Ap. J.

327

, 584.

[Sunyaev and Zel'dovich, 1973/80] Sunyaev R. and Y.B. Zel'dovich (1973). Comm. Astrophys. Sp.

Phys.

4

, 173.

Sunyaev, R. and Y.B. Zel'dovich (1980). Ann. Rev. Astron. Astro-phys.

18

, 537.

[Tolman, 1934] Tolman, R.C. (1934). Relativity, Thermodynamics and Cosmology, Clarendon Press, Oxford.

[Tremaine and Gunn, 1979] Tremaine, S. and J. Gunn (1979). Phys. Rev. Lett.

42

, 407.

[Turok, 1989] Turok, N. (1989). Phys. Rev. Lett.

63

, 2625.

[Turok and Spergel, 1990] Turok, N. and D. Spergel (1990). Phys. Rev. Lett.

64

, 2736.

[Vachaspati and Vilenkin, 1984] Vachaspati, T. and A. Vilenkin (1984). Phys. Rev.

D30

, 2036.

[Vachaspati and Vilenkin, 1991] Vachaspati, T. and A. Vilenkin (1991). Phys. Rev. Lett.

67

, 1057.

[Veeraraghavan and Stebbins, 1990] Veeraraghavan, S. and A. Stebbins, (1990). Ap. J.

365

, 37.

[Vilenkin, 1980] Vilenkin, A. (1980). Phys. Rep.

121

, 263.

[Vilenkin, 1984] Vilenkin, A. (1984). Ap. J. Lett.

282

, L51.

[Vilenkin, 1990] Vilenkin, A. (1990). Phys. Rev.

D41

, 3038.

[Wagoner et al., 1967] Wagoner, R.V., W.A. Fowler and F. Hoyle (1967). Ap. J.

148

, 3.

[Walker et al., 1991] Walker, T., G. Steigman, D.N. Schramm, K. Olive and H. Kang (1991). Ap. J.

376

, 51.

[Weinberg, 1971] Weinberg, S. (1972). Gravitation and Cosmology, Chap. 14, 15 and 16, John Wiley and Sons, New York.

[Weinberg, 1989] Weinberg, S. (1989). Rev. Mod. Phys.

61

, 1.

[West and van den Bergh, 1991] West, M.J. and S. van den Bergh (1991). Ap. J.

373

, 1.

[White, 1986] White, S.D.M. (1986). In Inner Space/ Outer Space, eds. E.W.

Kolb et al., Chicago.

[White et al., 1983] White, S.D.M., C. Frenk and M. Davis (1983). Ap. J.

274

, L1.

[Wirtz, 1918] Wirtz, C. (1918). Astr. Nachr.

206

, 109.

[Wright et al., 1992] Wright, E.L. et al. (1992). Ap. J.

396

L13.

[Zel'dovich, 1970] Zel'dovich, Y.B. (1970). Sov. Astron. Astrophys.

5

, 84.

[Zel'dovich, 1972] Zel'dovich, Y.B. (1972). Mon. Not. Roy. ast. Soc.

160

, 1p.

[Zel'dovich and Novikov, 1983] Zel'dovich Ya. B. and I.D. Novikov (1983). Relativistic Astro-physics Vol. II, University of Chicago Press, Chicago.

Fig. 1:

The spectrum of the cosmic microwave background radiation as measures by COBE (Figure from Mather et al. [1990]).

Fig. 2:

Limits on the CMB anisotropy on dierent angular scales. The COBE result is the only positive detection. All other marks represent 95% condence upper limits.

Fig. 3:

The linear perturbation spectrum of hot dark matter, for one (2) or three (1) types of massive neutrinos. The uctuations are heavily damped on scales smaller than

FS

m

Pl

=m

2 (Figure from Durrer [1989]).

Fig. 4:

Simulations of structure formation with HDM (top right and bottom pictures) compared with the corresponding picture from the CfA survey (top left). Triangles are high density regions identied as galaxies. One sees that the simulations lead to highly over developed large scale structure (Figure from White [1986]).

Fig. 5:

CDM simulations (a) and (b) compared with the CfA survey (c). No striking inconsistencies are visible at rst sight (Figure from Kolb and Turner [1990]).

Fig. 6:

The angular galaxy galaxy correlation function as measured by the IRAS survey (black dots) compared with the predictions from CDM models with

h

= 0

:

4 (black line) and

h

= 0

:

5 (dotted line). The open circles and squares are results from an older analysis of the Lick catalogue (Figure from Maddox et al. [1990]).

Fig. 7

The CMB anisotropy (in units of 10?3) from a spherically symmetric texture collapsing at

z

= 30 (left) and

z

= 200 (right) respectively as a function of angular separation from the center of the texture. This gure is calculated for a universe which reionizes at

z

= 200. It shows how signals from small scale textures are substantially damped and broadened by photon diusion.

Fig. 8:

The hot spot|cold spot signal of a spherically symmetric collapsing texture in units of

2

:

810?4 . The horizontal variable

=

t

?

r

cos

denotes the 'impact time' of a photon arriving at a distance

r

from the texture at time

t

traveling with an angle

with respect to the radial direction.

The hot spot{cold spot is shown for photons with xed impact parameter

b

=

r

sin

0

:

1

t

c(

t

cis the time of texture collapse). The signal from the expanding universe at

t

=

t

c, line (1), and

t

= 1

:

5

t

c, line (2), is compared with the at space result (dashed curve). The second peak appearing at

t

= 1

:

5

t

c

is due to the dark matter potential.

Fig. 9

As Fig. 8 but for dierent times with time steps

t

0

:

25

t

c. One sees an outgoing wake of blue shift at

t

. This is caused by photons which have fallen into the dark matter potential but have not yet climbed out of it again. This blueshift will of course be completely compensated by the redshift these photons will acquire during their way out of the dark matter potential.

Fig. 10

The CMB perturbation in units of

2

:

810?4 as a function of the impact parameter

b

for xed

0

:

5

t

c = 10. The signal disappears at an impact parameter

b

1

:

5

t

c (

t

c= 20 in the units chosen).

Fig. 11

A simulated COBE map as it might look in a scenario with texture + CDM. The color scheme goes from?410?4(dark blue) to 110?4(deep red). Monopole and dipole contributions are subtracted in this map. A description of how the map is produced (in collaboration with D.N. Spergel and A. Howard) is given in the text.

Fig. 12

The statistical distribution of microwave anisotropies in the texture scenario. The number of pixels showing a given anisotropy are counted for one realization of the CMB sky. The distribution is slightly non{Gaussian with skewness ?1 and curtosis3.

Fig. 13

A 3 + 1 slicing of spacetime M. The family of immersions of into M is denoted by

i

t;

i

t(

m

) =

?1(

m;t

).