• Aucun résultat trouvé

investigated the ultrafast excited-state dynamics of a series of donor-acceptor systems from simple dyads to synthetic supramolecular architectures in rigid structures. By doing this, I was lucky to be involved in many interesting projects, which allowed me to explore different aspects and factors that can affect the efficiency and rate of electron and energy transfer processes.

The research on simple donor-acceptor pairs gave us an understanding of how simple chemical manipulations, solvent polarity and excitation wavelength variation can significantly affect the photophysics of the investigated systems and lead to different processes on different timescales, and sometimes even in opposite directions. Additionally, the reaction rate dependence of electron transfer between a donor and an acceptor was also tested on the increasing number of electron acceptors covalently attached to a single donor.

Another important aspect that can affect electron transfer process occurs when donor and acceptor are separated by a molecular spacer or bridge. In such a case, the electron transfer process can depend not only on the nature of donor and acceptor moieties but also be mediated by the length and nature of the bridge. Moreover, two possible mechanisms of electron transfer can be operative in such systems: (i) hopping mechanism, when the bridge is directly involved in the process, resulting in the temporal localization of the electron on the bridge, or (ii) superexchange mechanism, when the electronic coupling is controlled by mixing the initial and final states of the system with high energy states of the bridge. Therefore, we investigated two sets of donor-bridge-acceptor systems with emphasis on the role of the bridge on electron transfer.

Finally, we studied the photophysics of a system that can find potential applications in optoelectronic and photovoltaic. For this, we worked on a system of high sophistication that can mimic the process of light harvesting and conversion. In nature, photosystems are composed of a large number of identical self-organized chromophores; this is advantageous for increasing the absorption cross-section. However, organization of many synthetic multichromophoric systems in supramolecular architectures can lead to the interaction between the nearby chromophores and thus considerably change the photophysical properties. That is why we compared the excited-state dynamics of a model multichromophoric system in solution with that of a supramolecular surface architecture.

Whereas, in the all previously discussed cases we have been interested in the single-electron transfer reactions, we also worked on light-driven accumulation of multiple electrons or holes on a certain molecular unit. Charge accumulation is necessary for artificial photosynthesis, because fuel-forming reactions such as H2 production or CO2 reduction require multiple redox equivalents. Therefore, a molecular pentad comprising a central multielectron donor and two flanking photosensitizer-acceptor moieties was examined on its ability of accumulating one and two positive charges at the central donor.

The investigation of very rich excited-state dynamics and complex photophysics of the systems explored in this thesis was possible due to a combination of steady-state and time-resolved spectroscopy. Femto- and picosecond resolved techniques allowed us to measure photophysical processes in a real time, and to cover the time window of interest from 100 femtosecond to millisecond. Time-resolved fluorescence techniques were extremely useful to explore precisely the fluorescence dynamics, while transient absorption allowed to get a full picture by monitoring also non-emissive and dark states. The broadband detection permitted us to identify the intermediate reaction products that might be missed in single-wavelength detection measurements.

References

1. Klán, P.; Wirz, J., Photochemistry of Organic Compounds: From Concepts to Practice, John Wiley & Sons, Inc., 2009.

2. Eisberg, R. M.; Resnick, R., Quantum physics of atoms, molecules, solids, nuclei, and particles, John Wiley & Sons, Inc., New York, second edition, 1985.

3. Abdel-Kader, M. H. (ed.), Photodynamic Therapy. From Theory to Application, Springer-Verlag Berlin Heidelberg, 2014.

4. Englman, R.; Jortner, J., The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18, 145-164.

5. El-Sayed, M. A., Triplet state. Its radiative and nonradiative properties.

Acc. Chem. Res. 1968, 1, 8-16.

6. Marian, C. M., Spin-orbit coupling and intersystem crossing in molecules. WIREs Comput. Mol. Sci. 2012, 2, 187-203.

7. Turro, N. J. R., V.; Scaiano, J. C., Modern Molecular Photochemistry of Organic Molecules, University Science Books: Sausalito, CA, 2010.

8. Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213-2228.

9. Ceroni, P. (ed.), The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques, Springer-Verlag Berlin Heidelberg, 2012.

10. Barber, J., Photosystem II: an enzyme of global significance. Biochem.

Soc. Trans. 2006, 34, 619-631.

11. Pullerits, T.; Hess, S.; Herek, J. L.; Sundström, V., Temperature Dependence of Excitation Transfer in LH2 ofRhodobacter sphaeroides. J. Phys.

Chem. B 1997, 101, 10560-10567.

12. Abd-El Aziz, A. S.; Carraher, C. E.; Harvey, P. D.; Pittman, C. U.;

Zeldin, M. (eds.), Macromolecules Containing Metal and Metal-Like Elements, Volume 10, Photophysics and Photochemistry of Metal-Containing Polymers, John Wiley & Sons, Inc. and Hoboken, New Jersey, Canada, 2010.

13. Weller, A., Photoinduced Electron Transfer in Solutions: Exciplex and Radical Ion Pair Formation Free Enthalpies and their Solvent Dependence. Z.

Phys. Chem. N.F. 1982, 133, 93-98.

14. Marcus, R. A.; Sutin, N., Electron Transfers in Chemistry and Biology.

Biochem. Biophys. Acta 1985, 811, 265-322.

15. Marcus, R. A., Transfer reactions in chemistry. Theory and experiment.

Pure & Appl. Chem. 1997, 69, 13-29.

16. Kumpulainen, T.; Lang, B.; Rosspeintner, A.; Vauthey, E., Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution.

Chem. Rev. 2016.

17. Maiman, T. H., Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493-494.

18. Saleh, B. E. A.; Teich, M. C., Fundamentals of Photonics, John Wiley

& Sons, Inc. and Hoboken, New Jersey, Canada, 1991.

19. Vauthey, E., Introduction to nonlinear optical spectroscopy, Lecture notes, University of Geneva.

20. Boyd, R., Nonlinear Optics, 3rd ed., Academic Press, USA, 2008.

21. Vauthey, E., Introduction to nonlinear optical spectroscopic techniques for investigating ultrafast processes, Lecture notes, University of Geneva.

22. Träger, F., Handbook of lasers and optics, New York, NY : Springer, 2007.

23. Trig, G. L. (ed.), Encyclopedia of Applied Physics, Vol.22, WILEY- VCH Verlag, New York, 1998.

24. Becker, W., Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics; Springer-Verlag Berlin Heidelberg, 2005.

25. Tkachenko, N. V., Optical spectroscopy: methods and instrumentation, Elsevier Amsterdam, 2006.

26. Muller, P.-A.; Högemann, C.; Allonas, X.; Jacques, P.; Vauthey, E., Deuterium isotope effect on the charge recombination dynamics of contact ion pairs formed by electron-transfer quenching in acetonitrile. Chem. Phys. Lett.

2000, 326, 321-327.

27. Furstenberg, A.; Vauthey, E., Excited-state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions and in heterogeneous media.

Photochem. Photobiol. Sci. 2005, 4, 260-267.

28. Fleming, G. R., Chemical Application of Ultrafast Spectroscopy, Oxford University Press, Inc., New York, 1986.

29. Rullière, C., Femtosecond Laser Pulses: Principles and Experiments, Springer-Verlag, Berlin, Heidelberg, 1998.

30. Berera, R.; van Grondelle, R.; Kennis, J. T., Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

Photosynth. Res. 2009, 101, 105-118.

31. Lang, B.; Mosquera-Vazquez, S.; Lovy, D.; Sherin, P.; Markovic, V.;

Vauthey, E., Broadband ultraviolet-visible transient absorption spectroscopy in the nanosecond to microsecond time domain with sub-nanosecond time resolution. Rev. Sci. Instrum. 2013, 84, 073107−073108.

32. Banerji, N.; Duvanel, G.; Perez-Velasco, A.; Maity, S.; Sakai, N.;

Matile, S.; Vauthey, E., Excited-state dynamics of hybrid multichromophoric systems: toward an excitation wavelength control of the charge separation pathways. J. Phys. Chem. A 2009, 113, 8202-8212.

References

33. Duvanel, G.; Banerji, N.; Vauthey, E., Excited-state dynamics of donor-acceptor bridged systems containing a boron-dipyrromethene chromophore:

interplay between charge separation and reorientational motion. J. Phys. Chem.

A 2007, 111, 5361-5369.

34. Wilhelm, T.; Piel, J.; Riedle, E., Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt.

Lett. 1997, 22, 1494-1496.

35. Riedle, E.; Beutter, M.; Lochbrunner, S.; Piel, J.; Schenkl, S.; Spörlein, S.; Zinth, W., Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR. Appl. Phys. B 2014, 71, 457-465.

36. van Stokkum, I. H. M.; Larsen, D. S.; van Grondelle, R., Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta, Bioenerg.

2004, 1657, 82-104.

37. Sakai, N.; Matile, S., Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. J. Am. Chem. Soc. 2011, 133, 18542-18545.

38. Ganesan, P.; Yang, X.; Loos, J.; Savenije, T. J.; Abellon, R. D.;

Zuilhof, H.; Sudholter, E. J., Tetrahedral n-type materials: efficient quenching of the excitation of p-type polymers in amorphous films. J. Am. Chem. Soc. 2005, 127, 14530-14531.

39. Yushchenko, O.; Licari, G.; Mosquera-Vazquez, S.; Sakai, N.; Matile, S.; Vauthey, E., Ultrafast Intersystem-Crossing Dynamics and Breakdown of the Kasha-Vavilov's Rule of Naphthalenediimides. J. Phys. Chem. Lett. 2015, 6, 2096-2100.

40. Yushchenko, O.; Villamaina, D.; Sakai, N.; Matile, S.; Vauthey, E., Comparison of Charge-Transfer Dynamics of Naphthalenediimide Triads in Solution and π-Stack Architectures on Solid Surfaces. J. Phys. Chem. C 2015, 119, 14999-15008.

41. Yushchenko, O.; Hangarge, R. V.; Mosquera-Vazquez, S.; Boshale, S.

V.; Vauthey, E., Electron, Hole, Singlet, and Triplet Energy Transfer in Photoexcited Porphyrin-Naphthalenediimide Dyads. J. Phys. Chem. B 2015, 119, 7308-7320.

42. Banerji, N.; Bhosale, S. V.; Petkova, I.; Langford, S. J.; Vauthey, E., Ultrafast excited-state dynamics of strongly coupled porphyrin/core-substituted-naphthalenediimide dyads. Phys. Chem. Chem. Phys. 2011, 13, 1019-1029.

43. Heinz, L. G.; Yushchenko, O.; Neuburger, M.; Vauthey, E.; Wenger, O.

S., Tetramethoxybenzene is a Good Building Block for Molecular Wires:

Insights from Photoinduced Electron Transfer. J. Phys. Chem. A 2015, 119, 5676-5684.

44. Bonn, A. G.; Yushchenko, O.; Vauthey, E.; Wenger, O. S., Photoinduced Electron Transfer in an Anthraquinone-[Ru(bpy)3](2+)-Oligotriarylamine-[Ru(bpy)3](2+)-Anthraquinone Pentad. Inorg. Chem. 2016, 55, 2894-2899.

45. Würthner, F.; Shahadat, A.; Thalacker, C.; Debaerdemaeker, T., Core-Substituted Naphthalene Bisimides: New Fluorophors with Tunable Emission Wavelength for FRET Studies. Chem. Eur. J. 2002, 8, 4742-4750.

46. Röger, C.; Würthner, F., Core-Tetrasubstituted Naphthalene Diimides:  Synthesis, Optical Properties, and Redox Characteristics. J.

Org. Chem. 2007, 72, 8070-8075.

47. Bhosale, S. V.; Bhosale, S. V.; Kalyankar, M. B.; Langford, S. J., A Core-Substituted Naphthalene Diimide Fluoride Sensor. Org. Lett. 2009, 11, 5418-5421.

48. Villamaina, D.; Kelson, M. M. A.; Bhosale, S. V.; Vauthey, E., Excitation Wavelength Dependence of the Charge Separation Pathways in Tetraporphyrin-Naphthalene Diimide Pentads. Phys. Chem. Chem. Phys. 2014, 16, 5188-5200.

49. Sakai, N.; Mareda, J.; Vauthey, E.; Matile, S., Core-Substituted Naphthalenediimides. Chem. Commun. 2010, 46, 4225-4237.

50. Sakai, N.; Lista, M.; Kel, O.; Sakurai, S.-i.; Emery, D.; Mareda, J.;

Vauthey, E.; Matile, S., Self-Organizing Surface-Initiated Polymerization: Facile Access to Complex Functional Systems. J. Am. Chem. Soc. 2011, 133, 15224-15227.

51. Sisson, A. L.; Sakai, N.; Banerji, N.; Fürstenberg, A.; Vauthey, E.;

Matile, S., Zipper Assembly of Vectorial Rigid-Rod -Stack Architectures with Red and Blue Naphthalenediimides: Toward Supramolecular Cascade n/p-Heterojunctions. Angew. Chem. Int. Ed. 2008, 47, 3727-3729.

52. Bhosale, S.; L., S. A.; Talukdar, P.; Fürstenberg, A.; Banerji, N.;

Vauthey, E.; Bollot, G.; Mareda, J.; Röger, C.; Würthner, F.; Sakai, N.; Matile, S., Photoproduction of Proton Gradients with Pi-Stacked Fluorophore Scaffolds in Lipid Bilayers. Science 2006, 313, 84-86.

53. Barros, T. C.; Brochsztain, S.; Toscano, V. G.; Berci Filho, P.; Politi, M. J., Photophysical characterization of a 1,4,5,8-naphthalenediimide derivative.

J. Photochem. Photobiol. A 1997, 111, 97-104.

54. Refat, M. S.; Grabchev, I.; Chovelon, J. M.; Ivanova, G., Spectral properties of new N,N'-bis-alkyl-1,4,6,8-naphthalenediimide complexes.

Spectrochim. Acta A 2006, 64A, 435-441.

55. Alp, S.; Erten, S.; Karapire, C.; Koz, B.; Doroshenko, A. O.; Icli, S., Photoinduced Energy-Electron Transfer Studies with Naphthalene Diimides. J.

Photochem. Photobiol. A 2000, 135, 103-110.

56. Wintgens, V.; Valat, P.; Kossanyi, J.; Biczok, L.; Demeter, A.; Berces, T., Spectroscopic properties of aromatic dicarboximides. J. Chem. Soc. Faraday Trans. 1994, 90, 411-421.

57. Borgström, M.; Shaikh, N.; Johansson, O.; Anderlund, M. F.; Styring, S.; Aakermark, B.; Magnuson, A.; Hammarström, L., Light Induced Manganese Oxidation and Long-Lived Charge Separation in a Mn2II,II-RuII(bpy)3-Acceptor Triad. J. Am. Chem. Soc. 2005, 127, 17504-17515.

References

58. Pellegrin, Y.; Odobel, F., Molecular Devices Featuring Sequential Photoinduced Charge Separations for the Storage of Multiple Redox Equivalents. Coord. Chem. Rev. 2011, 255, 2578-2593.

59. Sazanovich, I. V.; Alamiry, M. A. H.; Best, J.; Bennett, R. D.;

Bouganov, O. V.; Davies, E. S.; Grivin, V. P.; Meijer, A. J. H. M.; Plyusnin, V.

F.; Ronayne, K. L.; Shelton, A. H.; Tikhomirov, S. A.; Towrie, M.; Weinstein, J.

A., Excited State Dynamics of a PtII Diimine Complex bearing a Naphthalene-Diimide Electron Acceptor. Inorg. Chem. 2008, 47, 10432-10445.

60. Ghiggino, K. P.; Hutchison, J. A.; Langford, S. J.; Latter, M. J.; Lee, M.

A. P.; Lowenstern, P. R.; Scholes, C.; Takezaki, M.; Wilman, B. E., Porphyrin-based molecular rotors as fluorescent probes of nanoscale environments. Adv.

Funct. Mater. 2007, 17, 805-813.

61. Guo, X.; Gan, Z.; Luo, H.; Araki, Y.; Zhang, D.; Zhu, D.; Ito, O., Photoinduced Electron-Transfer Processes of Tetrathiafulvalene-(Spacer)-(Naphthalenediimide)-(Spacer)-Tetrathiafulvalene Triads in Solution. J. Phys.

Chem. A 2003, 107, 9747-9753.

62. Miller, S. E.; Lukas, A. S.; Marsh, E.; Bushard, P.; Wasielewski, M. R., Photoinduced Charge Separation Involving an Unusual Double Electron Transfer Mechanism in a Donor-Bridge-Acceptor Molecule. J. Am. Chem. Soc. 2000, 122, 7802-7810.

63. Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R., Multistep Photochemical Charge Separation in Rod-like Molecules Based on Aromatic Imides and Diimides. J. Am. Chem. Soc. 1996, 118, 6767-6777.

64. Ganesan, P.; Baggerman, J.; Zhang, H.; Sudholter, E. J. R.; Zuilhof, H., Femtosecond Time-Resolved Photophysics of 1,4,5,8-Naphthalene Diimides. J.

Phys. Chem. A 2007, 111, 6151-6156.

65. Andric, G.; Boas, J. F.; Bond, A. M.; Fallon, G. D.; Ghiggino, K. P.;

Hogan, C. F.; Hutchison, J. A.; Lee, M. A. P.; Langford, S. J.; Pilbrow, J. R.;

Troup, G. J.; Woodward, C. P., Spectroscopy of naphthalene diimides and their anion radicals. Aust J Chem 2004, 57, 1011-1019.

66. Abraham, B.; McMasters, S.; Mullan, M. A.; Kelly, L. A., Reactivities of Carboxyalkyl-Substituted 1,4,5,8-Naphthalene Diimides in Aqueous Solution.

J. Am. Chem. Soc. 2004, 126, 4293-4300.

67. Banerji, N.; Fürstenberg, A.; Bhosale, S.; Sisson, A. L.; Sakai, N.;

Matile, S.; Vauthey, E., Ultrafast Photoinduced Charge Separation in Naphthalene Diimide Based Multichromophoric Systems in Liquid Solutions and in a Lipid Membrane. J. Phys. Chem. B 2008, 112, 8912-8922.

68. Jacques, P.; Allonas, X.; Sarbach, A.; Haselbach, E.; Vauthey, E., Tuning the Ion Formation Processes from Triplet-Triplet Annihilation to Triplet Mediated Photoionisation. Chem. Phys. Lett. 2003, 378, 185-191.

69. Vauthey, E., Photoinduced Symmetry-Breaking Charge Separation.

ChemPhysChem 2012, 13, 2001-2011.

70. Green, S.; Fox, M. A., Intramolecular Photoinduced Electron Transfer from Nitroxyl Radicals. J. Phys. Chem. 1995, 99, 14752-14757.

71. Gosztola, D.; Niemczik, M. P.; Svec, W.; Lukas, A. S.; Wasielewski, M. R., Excited Doublet States of Electrochemically Generated Aromatic Imide and Diimide Radical Anions. J. Phys. Chem. A 2000, 104, 6545-6551.

72. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–

correlation functional using the Coulomb-attenuating method (CAM-B3LYP).

Chem. Phys. Lett. 2004, 393, 51-57.

73. Sterzel, M.; Pilch, M.; Pawlikowski, M. T.; Skowronek, P.; Gawroński, J., The Absorption and Fluorescence Study of 1,4,5,8-Naphthalenetetracarboxy Diimides in their Low-Energy and Electronic States. The Franck–Condon Analysis in Terms of CASSCF Method. Chem. Phys. Lett. 2002, 362, 243-248.

74. Pigliucci, A.; Duvanel, G.; Daku, L. M. L.; Vauthey, E., Investigation of the Influence of Solute-solvent Interactions on the Vibrational Energy Relaxation Dynamics of Large Molecules in Liquids'. J. Phys. Chem. A 2007, 111, 6135-6145.

75. Kovalenko, S. A.; Schanz, R.; Hennig, H.; Ernsting, N. P., Cooling Dynamics of an Optically Excited Molecular Probe in Solution from Femtosecond Broadband Transient Absorption Spectroscopy. J. Chem. Phys.

2001, 115, 3256-3274.

76. Lower, S. K.; El-Sayed, M. A., The Triplet State and Molecular Electronic Processes in Organic Molecules. Chem. Rev. 1966, 66, 199-241.

77. Holten, D.; Bocian, D. F.; Lindsey, J. S., Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices. Acc. Chem. Res. 2002, 35, 57-69.

78. Imahori, H., Giant multiporphyrin arrays as artificial light-harvesting antennas. J. Phys. Chem. B 2004, 108, 6130-6143.

79. Sakai, N.; Sisson, A. L.; Burgi, T.; Matile, S., Zipper assembly of photoactive rigid-rod naphthalenediimide pi-stack Architectures on gold nanoparticles and gold electrodes. J. Am. Chem. Soc. 2007, 129, 15758-15759.

80. Wasielewski, M. R., Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem.

Res. 2009, 42, 1910-1921.

81. Bottari, G.; de la Torre, G.; Guldi, D. M.; Torres, T., Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics.

Chem. Rev. 2010, 110, 6768-6816.

82. Wurthner, F.; Meerholz, K., Systems Chemistry Approach in Organic Photovoltaics. Chem. Eur. J. 2010, 16, 9366-9373.

83. Astruc, D.; Boisselier, E.; Ornelas, C., Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857-959.

84. Charvet, R.; Yamamoto, Y.; Sasaki, T.; Kim, J.; Kato, K.; Takata, M.;

Saeki, A.; Seki, S.; Aida, T., Segregated and alternately stacked donor/acceptor

References

nanodomains in tubular morphology tailored with zinc porphyrin-C60 amphiphilic dyads: clear geometrical effects on photoconduction. J. Am. Chem.

Soc. 2012, 134, 2524-2527.

85. Sundstrom, V., Femtobiology. Annu. Rev. Phys. Chem. 2008, 59, 53-77.

86. van Grondelle, R.; Novoderezhkin, V. I., Photosynthesis: Quantum design for a light trap. Nature 2010, 463, 614-615.

87. Hohmann-Marriott, M. F.; Blankenship, R. E., Evolution of photosynthesis. Annu. Rev. Plant. Biol. 2011, 62, 515-548.

88. Osswald, P.; You, C. C.; Stepanenko, V.; Wurthner, F., DABCO-Mediated Self-Assembly of Zinc Porphyrin-Perylene Bisimide Monodisperse Multichromophoric Nanoparticles. Chem. Eur. J. 2010, 16, 2386-2390.

89. Roger, C.; Muller, M. G.; Lysetska, M.; Miloslavina, Y.; Holzwarth, A.

R.; Wurthner, F., Efficient energy transfer from peripheral chromophores to the self-assembled zinc chlorin rod antenna: a bioinspired light-harvesting system to bridge the "green gap". J. Am. Chem. Soc. 2006, 128, 6542-6543.

90. Kasha, M. R., H. R.; El-Bayoumi, M. A., The Exciton Model in Molecular Spectroscopy. . Pure Appl. Chem. 1965, 11, 371−392.

91. van Amerongen, H. V., L.; van Grondelle, R., Photosynthetic Excitons.

World Scientific: Singapore, 2000.

92. Jenkins, R. D.; Andrews, D. L., Multichromophore excitons and resonance energy transfer: Molecular quantum electrodynamics. J. Chem. Phys.

2003, 118, 3470-3479.

93. Spano, F. C.; Silva, C., H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477-500.

94. Hattori, S.; Ohkubo, K.; Urano, Y.; Sunahara, H.; Nagano, T.; Wada, Y.; Tkachenko, N. V.; Lemmetyinen, H.; Fukuzumi, S., Charge separation in a nonfluorescent donor-acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation. J. Phys. Chem. B 2005, 109, 15368-15375.

95. Kodis, G.; Terazono, Y.; Liddell, P. A.; Andreasson, J.; Garg, V.;

Hambourger, M.; Moore, T. A.; Moore, A. L.; Gust, D., Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. J. Am. Chem. Soc. 2006, 128, 1818-1827.

96. Chaignon, F.; Falkenstrom, M.; Karlsson, S.; Blart, E.; Odobel, F.;

Hammarstrom, L., Very large acceleration of the photoinduced electron transfer in a Ru(bpy)(3)-naphthalene bisimide dyad bridged on the naphthyl core. Chem.

Commun. 2007, 64-66.

97. Dance, Z. E.; Ahrens, M. J.; Vega, A. M.; Ricks, A. B.; McCamant, D.

W.; Ratner, M. A.; Wasielewski, M. R., Direct observation of the preference of hole transfer over electron transfer for radical ion pair recombination in donor-bridge-acceptor molecules. J. Am. Chem. Soc. 2008, 130, 830-832.

98. Lembo, A.; Tagliatesta, P.; Guldi, D. M.; Wielopolski, M.; Nuccetelli, M., Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J. Phys. Chem. A 2009, 113, 1779-1793.

99. Villamaina, D.; Bhosale, S. V.; Langford, S. J.; Vauthey, E., Excited-state dynamics of porphyrin-naphthalenediimide-porphyrin triads. Phys. Chem.

Chem. Phys. 2013, 15, 1177-1187.

100. Jarnagin, R. C., Photoionization Processes in Organic Solids and Fluids.

Acc. Chem. Res. 1971, 4, 420−427.

101. Nicolet, O.; Vauthey, E., Heavy atom effect on the charge recombination dynamics of photogenerated geminate ion pairs. J. Phys. Chem. A 2003, 107, 5894-5902.

102. Bhosale, R.; Misek, J.; Sakai, N.; Matile, S., Supramolecular n/p-heterojunction photosystems with oriented multicolored antiparallel redox gradients (OMARG-SHJs). Chem. Soc. Rev. 2010, 39, 138-149.

103. Glatz, A.; Vinokur, V. M.; Galperin, Y. M., Statistics of deep energy states in Coulomb glasses. Phys. Rev. Lett. 2007, 98, 999−1002.

104. Tsiok, O. B.; Brazhkin, V. V.; Lyapin, A. G.; Khvostantsev, L. G., Logarithmic kinetics of the amorphous-amorphous transformations in SiO2 and GeO2 glasses under high-pressure. Phys. Rev. Lett. 1998, 80, 999-1002.

105. Breinl, W.; Friedrich, J.; Haarer, D., Logarithmic decay of photochemically induced two-level systems in an organic glass. Chem. Phys.

Lett. 1984, 106, 487-490.

106. Vauthey, E.; Voss, J.; Decaro, C.; Renn, A.; Wild, U. P., Spectral Hole-Burning Study of Squaraine Dyes in Polymer-Films. J. Lumin. 1993, 56, 61-69.

107. Lund, R.; Willner, L.; Richter, D.; Dormidontova, E. E., Equilibrium chain exchange kinetics of diblock copolymer micelles: Tuning and logarithmic relaxation. Macromolecules 2006, 39, 4566-4575.

108. Brauns, E. B.; Madaras, M. L.; Coleman, R. S.; Murphy, C. J.; Berg, M.

A., Complex local dynamics in DNA on the picosecond and nanosecond time scales. Phys. Rev. Lett. 2002, 88, 158101/1-158101/4.

109. Skorobogatiy, M.; Guo, H.; Zuckermann, M., Non-Arrhenius modes in the relaxation of model proteins. J. Chem. Phys. 1998, 109, 2528-2535.

110. Pal, S. K.; Kesti, T.; Maiti, M.; Zhang, F.; Inganas, O.; Hellstrom, S.;

Andersson, M. R.; Oswald, F.; Langa, F.; Osterman, T.; Pascher, T.; Yartsev, A.;

Sundstrom, V., Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. J. Am. Chem. Soc.

2010, 132, 12440-12451.

111. Dimitrov, S. D.; Bakulin, A. A.; Nielsen, C. B.; Schroeder, B. C.; Du, J.; Bronstein, H.; McCulloch, I.; Friend, R. H.; Durrant, J. R., On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends.

J. Am. Chem. Soc. 2012, 134, 18189-18192.

112. Credgington, D.; Jamieson, F. C.; Walker, B.; Nguyen, T. Q.; Durrant, J. R., Quantification of Geminate and Non-Geminate Recombination Losses within a Solution-Processed Small-Molecule Bulk Heterojunction Solar Cell.

Adv. Mater. 2012, 24, 2135-2141.

113. Heeger, A. J., 25th anniversary article: Bulk heterojunction solar cells:

understanding the mechanism of operation. Adv. Mater. 2014, 26, 10-27.

References

114. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324-1338.

115. Cowan, S. R.; Banerji, N.; Leong, W. L.; Heeger, A. J., Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells.

Adv. Funct. Mater. 2012, 22, 1116-1128.

116. Sforazzini, G.; Orentas, E.; Bolag, A.; Sakai, N.; Matile, S., Toward oriented surface architectures with three coaxial charge-transporting pathways. J.

Am. Chem. Soc. 2013, 135, 12082-12090.

117. Charbonnaz, P.; Zhao, Y.; Turdean, R.; Lascano, S.; Sakai, N.; Matile, S., Surface architectures built around perylenediimide stacks. Chem. Eur. J.

2014, 20, 17143-17151.

118. Bolag, A.; Lopez-Andarias, J.; Lascano, S.; Soleimanpour, S.; Atienza, C.; Sakai, N.; Martin, N.; Matile, S., A Collection of Fullerenes for Synthetic Access Toward Oriented Charge-Transfer Cascades in Triple-Channel Photosystems. Angew. Chem. Int. Ed. 2014, 53, 4890-4895.

119. Maligaspe, E.; Kumpulainen, T.; Subbaiyan, N. K.; Zandler, M. E.;

Lemmetyinen, H.; Tkachenko, N. V.; D'Souza, F., Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center. Phys. Chem. Chem. Phys. 2010, 12, 7434-7444.

120. Terazono, Y.; Kodis, G.; Liddell, P. A.; Garg, V.; Moore, T. A.; Moore, A. L.; Gust, D., Multiantenna artificial photosynthetic reaction center complex.

J. Phys. Chem. B 2009, 113, 7147-7155.

121. D'Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.;

Araki, Y.; Ito, O., Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene:

a model for the photosynthetic antenna-reaction center complex. J. Am. Chem.

Soc. 2004, 126, 7898-7907.

122. Guldi, D. M., Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 2002, 31, 22-36.

123. Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.;

Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D., An Artificial Photosynthetic Antenna-Reaction Center Complex. J. Am. Chem. Soc. 1999, 121, 8604-8614.

124. Gust, D.; Moore, T. A.; Moore, A. L.; Macpherson, A. N.; Lopez, A.;

Degraziano, J. M.; Gouni, I.; Bittersmann, E.; Seely, G. R.; Gao, F.; Nieman, R.

A.; Ma, X. C. C.; Demanche, L. J.; Hung, S. C.; Luttrull, D. K.; Lee, S. J.;

Kerrigan, P. K., Photoinduced Electron and Energy-Transfer in Molecular Pentads. J. Am. Chem. Soc. 1993, 115, 11141-11152.

125. Gust, D.; Moore, T. A.; Moore, A. L., Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890-1898.

126. Grimm, B.; Schornbaum, J.; Jasch, H.; Trukhina, O.; Wessendorf, F.;

Hirsch, A.; Torres, T.; Guldi, D. M., Step-by-step self-assembled hybrids that

feature control over energy and charge transfer. Proc. Natl. Acad. Sci. U.S.A.

2012, 109, 15565-15571.

127. Wasielewski, M. R., Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem.

2006, 71, 5051-5066.

128. Morandeira, A.; Vauthey, E.; Schuwey, A.; Gossauer, A., Ultrafast Excited State Dynamics of Tri- and Hexaporphyrin Arrays. J. Phys. Chem. A 2004, 108, 5741-5751.

129. Brodard, P.; Matzinger, S.; Vauthey, E.; Mongin, O.; Papamicaël, C.;

Gossauer, A., Investigations of Electronic Energy Transfer Dynamics in Multiporphyrin Arrays. J. Phys. Chem. A 1999, 103, 5858-5870.

130. Lammi, R. K.; Ambroise, A.; Balasubramanian, T.; Wagner, R. W.;

Bocian, D. F.; Holten, D.; Lindsey, J. S., Structural Control of Photoinduced Energy Transfer between Adjacent and Distant Sites in Multiporphyrin Arrays.

J. Am. Chem. Soc. 2000, 122, 7579-7591.

131. Yu, H. Z.; Baskin, J. S.; Zewail, A. H., Ultrafast dynamics of porphyrins in the condensed phase: II. Zinc tetraphenylporphyrin. J. Phys. Chem.

A 2002, 106, 9845-9854.

132. Ohno, O.; Kaizu, Y.; Kobayashi, H., Luminescence of Some Metalloporphins Including the Complexes of the Iiib Metal Group. J. Chem.

Phys. 1985, 82, 1779-1787.

133. Pigliucci, A.; Duvanel, G.; Daku, L. M. L.; Vauthey, E., Investigation of the influence of solute-solvent interactions on the vibrational energy

133. Pigliucci, A.; Duvanel, G.; Daku, L. M. L.; Vauthey, E., Investigation of the influence of solute-solvent interactions on the vibrational energy