• Aucun résultat trouvé

In future, we would like to work on different cancer cell diagnosis such as breast cancer, lung cancer, bone cancer, blood cancer, skin cancer etc. The accuracy level and methodology of our research and analysis results can help us to work more on such datasets. We can make more informed decisions about how to combine datasets and use all histone modifications, as well as collect and build capacity to harness more data for more patients and develop a predictive model that is as accurate as ours and can be used to make real-time predictions. In our research, we did not achieve good accuracy for ANN deep learning method which we would like to work on such model with different samples and cancers to improve the findings.

110

References

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7–30.

https://doi.org/10.3322/caac.21442.

[2] Belcher R, Hayes K, Fedewa S, et al. Current treatment of head and neck squamous cell cancer.

J Surg Oncol 2014;110:551–74 2014/07/24 https://doi.org/10.1002/jso.23724.

[3] Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc 2016;91:386–96 2016/03/06 https://doi.org/10.1016/j.mayocp.2015.12.017.

[4] Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with

oropharyngeal cancer. N Engl J Med 2010;363:24–35.

https://doi.org/10.1056/NEJMoa0912217.

[5] Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92:709–20 [2000/05/04].

[6] Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29:4294–301 2011/10/05 https://doi.org/10.1200/JCO.2011.36.4596.

[7] D'Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 2007;356:1944–56 2007/05/15 https://doi.

org/10.1056/NEJMoa065497.

[8] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2):69-90

111

[9] Nelson HH, Pawlita M, Michaud DS, McClean M, Langevin SM, Eliot MN, et al. Immune response to HPV16 E6 and E7 proteins and patient outcomes in head and neck cancer. JAMA Oncol. (2016). 3:178–85. doi: 10.1001/jamaoncol.2016.4500

[10] Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. (2000) 92:709–20.doi: 10.1093/jnci/92.9.709

[11] Rampias T, Sasaki C, Weinberger P, Psyrri A. E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst.

(2009) 101:412–23. doi: 10.1093/jnci/djp017

[12] Weinberger PM, Yu Z, Haffty BG, Kowalski D, Harigopal M, Brandsma J, et al. Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favourable prognosis. J Clin Oncol. (2006) 24:736–47. doi: 10.1200/JCO.2004.00.3335 [13] Patel SG, Shah JP. TNM staging of cancers of the head and neck: striving for uniformity among

diversity. CA Cancer J Clin. (2005) 55:242–58; quiz 61-2, 64. doi: 10.3322/canjclin.55.4.242 [14] Ambler G, Omar RZ, Royston P. A comparison of imputation techniques for handling missing

predictor values in a risk model with a binary outcome. Stat Methods Med Res. 2007;16(3):277–

98.

[15] Frank E, Hall MA, Witten IH. The WEKA workbench. Online appendix for “data mining:

practical machine learning tools and techniques”. 4th ed. Cambridge: Morgan Kaufmann; 2016.

[16] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68:394–424.

112 [17] Histone Modifications. What is Epigenetics? (n.d.).

https://www.whatisepigenetics.com/histone-modifications/.

[18] TNM Staging System. (2020). Definitions. https://doi.org/10.32388/ofvynj

[19] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68:394–424.

[20] Boscolo-Rizzo P, Zorzi M, Mistro ADel, Da Mosto MC, Tirelli G, Buzzoni C, Rugge M, Polesel J, Guzzinati S, Group AW. 2018. The evolution of the epidemiological landscape of head and neck cancer in Italy: is there evidence for an increase in the incidence of potentially HPV-related carcinomas? PLOS ONE 13(2):e0192621 DOI 10.1371/journal.pone.0192621.

[21] Kapoor A, Kumar A. 2019. Head-and-neck dermatofibrosarcoma protuberans: scooping out data even in dearth of evidence [Abstract 256]. Cancer Research, Statistics, and Treatment 2 DOI 10.4103/CRST.CRST_70_19.

[22] Deshpande AM, Wong DT. 2008. Molecular mechanisms of head and neck cancer. Expert Review of Anticancer Therapy 8:799–809 DOI 10.1586/14737140.8.5.799.

[23] Vigneswaran N, Williams MD. 2014. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral and Maxillofacial Surgery Clinics of North America 26:123–141 DOI 10.1016/j.coms.2014.01.001.

[24] Poddar A, Aranha R, Royam MM, Gothandam KM, Nachimuthu R, Jayaraj R. 2019. Incidence, prevalence, and mortality associated with head and neck cancer in India: protocol for a systematic review. Indian Journal of Cancer 56:101–106 DOI 10.4103/ijc.IJC_416_18.

113

[25] Akhtar A, Hussain I, Talha M, Shakeel M, Faisal M, Ameen M, Hussain T. 2016. Prevalence and diagnostic of head and neck cancer in Pakistan. Pakistan Journal of Pharmaceutical Sciences 29:1839–1846.

[26] Stenson KM, Brockstein BE, Ross ME. 2016. Epidemiology and risk factors for head and neck cancer. UpToDate. Available at https://www.uptodate.com/ contents/ Kumar et al. (2020), PeerJ, DOI 10.7717/peerj.9656

[27] Marur S, D’Souza G, Westra WH, Forastiere AA. 2010. HPV-associated head and neck cancer:

a virus-related cancer epidemic. The Lancet Oncology 11:781–789 DOI 10.1016/S1470-2045(10)70017-6.

[28] Leemans CR, Snijders PJ, Brakenhoff RH. 2018. The molecular landscape of head and neck cancer. Nature Reviews Cancer 18:269 DOI 10.1038/nrc.2018.11. Liaw A, Wiener M. 2002.

Classification and regression by randomForest. R News 2:18–22.

[29] Wiegand S, Zimmermann A, Wilhelm T, Werner JA. 2015. Survival after distant metastasis in head and neck cancer. Anticancer Research 35:5499–5502.

[30] Kumar, S., Patnaik, S., & Dixit, A. (2020). Predictive models for stage and risk classification in head and neck squamous cell carcinoma (HNSCC). PeerJ, 8.

https://doi.org/10.7717/peerj.9656

[31] MacFarlane L-A, Murphy R. 2010. MicroRNA: biogenesis, function and role in cancer. Current Genomics 11:537–561 DOI 10.2174/138920210793175895.

[32] Esteller M. 2011. Non-coding RNAs in human disease. Nature Reviews Genetics 12:861 DOI 10.1038/nrg3074.

114

[33] Iorio MV, Croce CM. 2012. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Molecular Medicine 4:143–159 DOI 10.1002/emmm.201100209.

[34] Bianchi F, Nicassio F, Marzi M, Belloni E, Dall’Olio V, Bernard L, Pelosi G, Maisonneuve P, Veronesi G, Di Fiore PP. 2011. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early-stage lung cancer. EMBO Molecular Medicine 3:495–503 DOI 10.1002/emmm.201100154.

[35] Mostert B, Sieuwerts AM, Martens JW, Sleijfer S. 2011. Diagnostic applications of cellfree and circulating tumor cell-associated miRNAs in cancer patients. Expert Review of Molecular Diagnostics 11:259–275 DOI 10.1586/erm.11.11.

[36] The Cancer Genome Atlas. Available from: http://cancergenome.nih.gov/. Accessed 10 June 2019.

[37] Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for Cancer genomic data. N Engl J Med. 2016; 375(12):1109–12.

[38] NCI Cancer Institute Genomic Data Commons Data Portal. Available from:

https://portal.gdc.cancer.gov/. Accessed 10 December 2020.

[39] Bratman SV, Bruce JP, O’Sullivan B, et al. Human papillomavirus genotype association with survival in head and neck squamous cell carcinoma. JAMA Oncol. 2016;2(6):823–6.

[40] Chakravarthy A, Henderson S, Thirdborough SM, Ottensmeier CH, Su X, Lechner M, et al.

Human papillomavirus drives tumor development throughout the head and neck: improved

115

prognosis is associated with an immune response largely restricted to the oropharynx. J Clin Oncol. 2016;34(34):4132–41.

[41] Mroz EA, Patel K, Rocco JW. TCGA data on head and neck squamous cell carcinoma suggest therapy-specific implications of Intratumor heterogeneity. Int J Radiation Oncol Biol Physics.

2018;100(5):1309.

[42] Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics.

Bioinformatics. 2007;23(19):2507–17.

[43] Mahmood, H., Shaban, M., Rajpoot, N., & Khurram, S. A. (2021). Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview. British Journal of Cancer.

https://doi.org/10.1038/s41416-021-01386-x.

[44] Obermeyer Z, Emanuel EJ. 2016. Predicting the future—big data, machine learning, and clinical medicine. The New England Journal of Medicine 375:1216–1219 DOI 10.1056/NEJMp1606181.

[45] Way GP, Sanchez-Vega F, La K, Armenia J, Chatila WK, Luna A, Sander C, Cherniack AD, Mina M, Ciriello G. 2018. Machine learning detects pan-cancer pathway activation in the cancer genome atlas. Cell Reports 23:172–180. e173 DOI 10.1016/j.celrep.2018.03.046.

[46] Komura D, Ishikawa S. 2018. Machine learning methods for histopathological image analysis.

Computational and Structural Biotechnology Journal 16:34–42 DOI 10.1016/j.csbj.2018.01.001.

116

[47] Avissar M, Christensen BC, Kelsey KT, Marsit CJ. 2009. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clinical Cancer Research 15:2850–2855 DOI 10.1158/1078-0432.CCR-08-3131.

[48] Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, Makitie AA, Salo T, Leivo I, Almangush A. 2019. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool. Virchows Archiv 475:489–497 DOI 10.1007/s00428-019-02642-5. Alexopoulos EC. 2010. Introduction to multivariate regression analysis. Hippokratia 14:23–28.

[49] Kim DW, Lee S, Kwon S, Nam W, Cha IH, Kim HJ. 2019. Deep learning-based survival prediction of oral cancer patients. Scientific Reports 9:6994 DOI 10.1038/s41598-019-43372-7.

[50] Karadaghy, O. A., Shew, M., New, J., & Bur, A. M. (2019). Development and Assessment of a Machine Learning Model to Help Predict Survival Among Patients With Oral Squamous Cell Carcinoma. JAMA Otolaryngology–Head & Neck Surgery, 145(12), 1115.

https://doi.org/10.1001/jamaoto.2019.0981

[51] Asri, H., Mousannif, H., Moatassime, H. A., & Noel, T. (2016). Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis. Procedia Computer Science, 83, 1064–1069. https://doi.org/10.1016/j.procs.2016.04.224

[52] Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1).

https://doi.org/10.1186/1472-6947-11-51.

[53] Parmar, C., Grossmann, P., Rietveld, D., Rietbergen, M. M., Lambin, P., & Aerts, H. J.

(2015). Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Frontiers in Oncology, 5. https://doi.org/10.3389/fonc.2015.00272

117

[54] Wang L, Jia Y, Jiang Z, Gao W, Wang B. FSCN1 is upregulated by SNAI2 and promotes epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Cell Biol Int.

2017;41(8):833–41.

[55] Liu J, Wu Y, Wang Q, Liu X, Liao X, Pan J. Bioinformatic analysis of PFN2 dysregulation and its prognostic value in head and neck squamous carcinoma. (1744–8301 (Electronic)). 2018.

[56] Huang H, Lin C, Yang C, Ho C, Chang Y, Chang J, editors. An integrative analysis for Cancer studies. 2016 IEEE 16th international conference on bioinformatics and bioengineering (BIBE);

2016 31 Oct.-2 Nov. 2016.

[57] Krempel R, Kulkarni P, Yim A, Lang U, Habermann B, Frommolt P. Integrative analysis and machine learning on cancer genomics data using the Cancer systems biology database (CancerSysDB). BMC Bioinformatics. 2018;19(1):156.

[58] Hu S, Yuan H, Li Z, Zhang J, Wu J, Chen Y, et al. Transcriptional response profiles of paired tumor-normal samples offer novel perspectives in pancancer analysis. Oncotarget.

2017;8(25):41334–47.

[59] Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning–based multiomics integration robustly predicts survival in liver Cancer. Clin Cancer Res. 2018;24(6):1248.

[60] Kim SY, Kim TR, Jeong H-H, Sohn K-A. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer. BMC Med Genet. 2018;11(Suppl 3):68.

[61] Kumar, S., Chinnusamy, V., & Mohapatra, T. (2018). Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Frontiers in Genetics, 9.

https://doi.org/10.3389/fgene.2018.00640

[62] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357.

https://doi.org/10.1613/jair.953

Documents relatifs