• Aucun résultat trouvé

Chapter 3 - Discussion

5. Future Perspectives

Future studies should also include other types of focal epilepsy as well as patients with a poor seizure outcome. This will yield further confirmation for the clinical reliability of the used method, namely by indentifying strong drivers of activity outside the resection area in poor outcome patients.

In order to validate the clinical reliability of this functional connectivity method for presurgical evaluation, and also, how better it can perform as compared with other methods (for example, using only ESI), a study including a large cohort of patients (n>100) with several types of lesion should be considered.

Another important study with huge potential implication for the clinical practice will be to perform resting-state directed functional connectivity (without IEDs) in several types of epilepsy and healthy controls and build a classification system that, given a patient with an uncertain diagnose, is able to correctly classify it as having epilepsy or not and of which type.

Regarding the validation of ESI directed functional connectivity, simultaneous recordings of intracranial and scalp EEG provide a very important contribute. We have started by studying spikes that are seen at both

scalp and intracranial EEG, but it will also be important to study spikes that are only seen in the intracranial in order to find out whether functional connectivity analyses could find the important drivers even when scalp spikes are not be visible. This would be an important biomarker of epileptic activity.

Here, we studied only the outflows because we were interested in studying the main drivers of the network. However, it would be interesting in further studies to also investigate the inflows.

There are several factors that affect directed functional connectivity based on ESI signals. First of all, we should investigate which methods for restricting the dipole direction (average direction, decomposition techniques, anatomical orientation constraints) would yield the most reliable connectivity results. Secondly, there are currently some debated on whether the input data of the connectivity algorithm should be normalized or not. This is an important point and has to be investigated not only for simulation data, but most importantly, for real seizure or interictal spike data.

Another important point would be to perform a comparison in simulation and real data of the performance of be multivariate linear measures based on Granger-causality, such as DTF and PDC, with nonlinear measures such as the nonlinear correlation coefficient.

Conclusions

Epilepsy has been accepted as a network disorder [7], involving widespread brain networks rather than isolated single sources. In this project, we developed a methodological pipeline to investigate whole-brain directed functional connectivity from scalp EEG signals, and then applied it to assess the connectivity pattern changes in patients with LTLE and RTLE during interictal spikes and resting-state. We also showed that the same approach is suitable to study the main drivers of the resting brain and the directionality of their connections in healthy subjects. Our studies show that whole-brain electrophysiological-based directed functional connectivity analysis is a very promising tool to investigate connectivity patterns and how brain regions driver others during epileptic and non-epileptic activity. This could, therefore, constitute an important contribution for epilepsy presurgical planning, especially in patients in which the focus is not clear by other already available neuroimaging tools. It also holds promise for the use of EEG-based functional connectivity as a neuroimaging tool to investigate whole-brain cognitive processes.

References

[1] F. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski, and D. N. Velis, “Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity,”

Epilepsia, vol. 44 Suppl 12, pp. 72-83, 2003.

[2] M. Sillanpaa, “Long-term outcome of epilepsy,” Epileptic Disord, vol. 2, no. 2, pp. 79-88, Jun, 2000.

[3] S. U. Schuele, and H. O. Luders, “Intractable epilepsy: management and therapeutic alternatives,” Lancet Neurol, vol. 7, no. 6, pp. 514-24, Jun, 2008.

[4] S. Dupont, Y. Samson, P. F. Van de Moortele, S. Samson, J. B. Poline, D. Hasboun, D. Le Bihan, and M.

Baulac, “Bilateral hemispheric alteration of memory processes in right medial temporal lobe epilepsy,” J Neurol Neurosurg Psychiatry, vol. 73, no. 5, pp. 478-85, Nov, 2002.

[5] M. Seeck, F. Lazeyras, K. Murphy, A. Naimi, G. P. Pizzolatto, N. de Tribolet, J. Delavelle, J. G. Villemure, and T. Landis, “Psychosocial functioning in chronic epilepsy: relation to hippocampal volume and histopathological findings,” Epileptic Disord, vol. 1, no. 3, pp. 179-85, Sep, 1999.

[6] F. Zubler, M. Seeck, T. Landis, F. Henry, and F. Lazeyras, “Contralateral medial temporal lobe damage in right but not left temporal lobe epilepsy: a (1)H magnetic resonance spectroscopy study,” J Neurol Neurosurg Psychiatry, vol. 74, no. 9, pp. 1240-4, Sep, 2003.

[7] H. Laufs, “Functional imaging of seizures and epilepsy: evolution from zones to networks,” Curr Opin Neurol, vol. 25, no. 2, pp. 194-200, Apr, 2012.

[8] M. P. Richardson, “Large scale brain models of epilepsy: dynamics meets connectomics,” J Neurol Neurosurg Psychiatry, vol. 83, no. 12, pp. 1238-48, Dec, 2012.

[9] C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-spectral Methods,”

Econometrica, vol. 37, no. 3, pp. 424-438, 1969.

[10] F. Lopes da Silva, “EEG and MEG: relevance to neuroscience,” Neuron, vol. 80, no. 5, pp. 1112-28, Dec 4, 2013.

[11] C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clin Neurophysiol, vol. 115, no. 10, pp. 2195-222, Oct, 2004.

[12] V. Brodbeck, L. Spinelli, A. M. Lascano, M. Wissmeier, M. I. Vargas, S. Vulliemoz, C. Pollo, K. Schaller, C.

M. Michel, and M. Seeck, “Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients,” Brain, vol. 134, no. Pt 10, pp. 2887-97, Oct, 2011.

[13] P. Megevand, L. Spinelli, M. Genetti, V. Brodbeck, S. Momjian, K. Schaller, C. M. Michel, S. Vulliemoz, and M. Seeck, “Electric source imaging of interictal activity accurately localises the seizure onset zone,” J Neurol Neurosurg Psychiatry, vol. 85, no. 1, pp. 38-43, Jan, 2014.

[14] E. Rikir, L. Koessler, M. Gavaret, F. Bartolomei, S. Colnat-Coulbois, J. P. Vignal, H. Vespignani, G.

Ramantani, and L. G. Maillard, “Electrical source imaging in cortical malformation-related epilepsy: A prospective EEG-SEEG concordance study,” Epilepsia, Apr 4, 2014.

[15] J. M. Schoffelen, and J. Gross, “Source connectivity analysis with MEG and EEG,” Hum Brain Mapp, vol. 30, no. 6, pp. 1857-65, Jun, 2009.

[16] S. Haufe, V. V. Nikulin, K. R. Muller, and G. Nolte, “A critical assessment of connectivity measures for EEG data: a simulation study,” Neuroimage, vol. 64, pp. 120-33, Jan 1, 2013.

[17] Y. Dai, W. Zhang, D. L. Dickens, and B. He, “Source connectivity analysis from MEG and its application to epilepsy source localization,” Brain Topogr, vol. 25, no. 2, pp. 157-66, Apr, 2012.

[18] P. van Mierlo, E. Carrette, H. Hallez, K. Vonck, D. Van Roost, P. Boon, and S. Staelens, “Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals,” Neuroimage, vol. 56, no. 3, pp. 1122-33, Jun 1, 2011.

[19] P. van Mierlo, E. Carrette, H. Hallez, R. Raedt, A. Meurs, S. Vandenberghe, D. Van Roost, P. Boon, S.

Staelens, and K. Vonck, “Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy,” Epilepsia, vol. 54, no. 8, pp. 1409-18, Aug, 2013.

[20] G. Bettus, J. P. Ranjeva, F. Wendling, C. G. Benar, S. Confort-Gouny, J. Regis, P. Chauvel, P. J. Cozzone, L.

Lemieux, F. Bartolomei, and M. Guye, “Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations,” PLoS One, vol. 6, no. 5, pp. e20071, 2011.

[21] C. Wilke, W. van Drongelen, M. Kohrman, and B. He, “Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity,” Clin Neurophysiol, vol. 120, no. 8, pp. 1449-56, Aug, 2009.

[22] A. B. Waites, R. S. Briellmann, M. M. Saling, D. F. Abbott, and G. D. Jackson, “Functional connectivity networks are disrupted in left temporal lobe epilepsy,” Ann Neurol, vol. 59, no. 2, pp. 335-43, Feb, 2006.

[23] G. Bettus, F. Wendling, M. Guye, L. Valton, J. Regis, P. Chauvel, and F. Bartolomei, “Enhanced EEG functional connectivity in mesial temporal lobe epilepsy,” Epilepsy Res, vol. 81, no. 1, pp. 58-68, Sep, 2008.

[24] M. Seidenberg, K. G. Kelly, J. Parrish, E. Geary, C. Dow, P. Rutecki, and B. Hermann, “Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates,” Epilepsia, vol. 46, no. 3, pp. 420-30, Mar, 2005.

[25] G. L. Holmes, and P. P. Lenck-Santini, “Role of interictal epileptiform abnormalities in cognitive impairment,”

Epilepsy Behav, vol. 8, no. 3, pp. 504-15, May, 2006.

[26] World Health Organization, Fact sheet N°999, May 2015, http://www.who.int/mediacentre/factsheets/fs999/en/.

[27] R. S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J. H. Cross, C. E. Elger, J. Engel, Jr., L. Forsgren, J.

A. French, M. Glynn, D. C. Hesdorffer, B. I. Lee, G. W. Mathern, S. L. Moshe, E. Perucca, I. E. Scheffer, T.

Tomson, M. Watanabe, and S. Wiebe, “ILAE official report: a practical clinical definition of epilepsy,”

Epilepsia, vol. 55, no. 4, pp. 475-82, Apr, 2014.

[28] R. S. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel, Jr., “Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE),” Epilepsia, vol. 46, no. 4, pp. 470-2, Apr, 2005.

[29] A. T. Berg, S. F. Berkovic, M. J. Brodie, J. Buchhalter, J. H. Cross, W. van Emde Boas, J. Engel, J. French, T.

A. Glauser, G. W. Mathern, S. L. Moshe, D. Nordli, P. Plouin, and I. E. Scheffer, “Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009,” Epilepsia, vol. 51, no. 4, pp. 676-85, Apr, 2010.

[30] B. P. Hermann, M. Seidenberg, J. Schoenfeld, and K. Davies, “Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy,” Arch Neurol, vol. 54, no. 4, pp. 369-76, Apr, 1997.

[31] H. G. Wieser, “ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis,”

Epilepsia, vol. 45, no. 6, pp. 695-714, Jun, 2004.

[32] J. de Tisi, G. S. Bell, J. L. Peacock, A. W. McEvoy, W. F. Harkness, J. W. Sander, and J. S. Duncan, “The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study,”

Lancet, vol. 378, no. 9800, pp. 1388-95, Oct 15, 2011.

[33] F. Rosenow, and H. Luders, “Presurgical evaluation of epilepsy,” Brain, vol. 124, no. Pt 9, pp. 1683-700, Sep, 2001.

[34] W. Van Paesschen, P. Dupont, S. Sunaert, K. Goffin, and K. Van Laere, “The use of SPECT and PET in routine clinical practice in epilepsy,” Curr Opin Neurol, vol. 20, no. 2, pp. 194-202, Apr, 2007.

[35] T. J. O'Brien, E. L. So, B. P. Mullan, M. F. Hauser, B. H. Brinkmann, C. R. Jack, Jr., G. D. Cascino, F. B.

Meyer, and F. W. Sharbrough, “Subtraction SPECT co-registered to MRI improves postictal SPECT localization of seizure foci,” Neurology, vol. 52, no. 1, pp. 137-46, Jan 1, 1999.

[36] D. Mungas, C. Ehlers, N. Walton, and C. B. McCutchen, “Verbal learning differences in epileptic patients with left and right temporal lobe foci,” Epilepsia, vol. 26, no. 4, pp. 340-5, Jul-Aug, 1985.

[37] V. D. Bohbot, M. Kalina, K. Stepankova, N. Spackova, M. Petrides, and L. Nadel, “Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex,” Neuropsychologia, vol. 36, no. 11, pp. 1217-38, Nov, 1998.

[38] S. Baxendale, and P. Thompson, “Beyond localization: the role of traditional neuropsychological tests in an age of imaging,” Epilepsia, vol. 51, no. 11, pp. 2225-30, Nov, 2010.

[39] S. Baxendale, P. Thompson, W. Harkness, and J. Duncan, “Predicting memory decline following epilepsy surgery: a multivariate approach,” Epilepsia, vol. 47, no. 11, pp. 1887-94, Nov, 2006.

[40] A. M. Kanner, “Management of psychiatric and neurological comorbidities in epilepsy,” Nat Rev Neurol, Jan 18, 2016.

[41] A. M. Kanner, “Can neurobiological pathogenic mechanisms of depression facilitate the development of seizure disorders?,” Lancet Neurol, vol. 11, no. 12, pp. 1093-102, Dec, 2012.

[42] I. Garcia-Morales, P. de la Pena Mayor, and A. M. Kanner, “Psychiatric comorbidities in epilepsy:

identification and treatment,” Neurologist, vol. 14, no. 6 Suppl 1, pp. S15-25, Nov, 2008.

[43] J. Foong, and D. Flugel, “Psychiatric outcome of surgery for temporal lobe epilepsy and presurgical considerations,” Epilepsy Res, vol. 75, no. 2-3, pp. 84-96, Jul, 2007.

[44] D. Rai, M. P. Kerr, S. McManus, V. Jordanova, G. Lewis, and T. S. Brugha, “Epilepsy and psychiatric comorbidity: a nationally representative population-based study,” Epilepsia, vol. 53, no. 6, pp. 1095-103, Jun, 2012.

[45] E. Niedermeyer, and F. Lopes da Silva, Electroencephalography, 5th ed., Philadelphia: Lippincott Williams &

Wilkins, 2005.

[46] G. Buzsaki, C. A. Anastassiou, and C. Koch, “The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes,” Nat Rev Neurosci, vol. 13, no. 6, pp. 407-20, Jun, 2012.

[47] F. Lopes da Silva, "EEG: Origin and Measurement," EEG-fMRI, C. Mulert and L. Lemieux, eds., pp. 19-38:

Springer, 2010.

[48] C. M. Michel, T. Koenig, D. Brandeis, L. R. Gianotti, and J. Wackermann, Electrical Neuroimaging, 2009.

[49] J. X. Tao, M. Baldwin, S. Hawes-Ebersole, and J. S. Ebersole, “Cortical substrates of scalp EEG epileptiform discharges,” J Clin Neurophysiol, vol. 24, no. 2, pp. 96-100, Apr, 2007.

[50] P. van Mierlo, M. Papadopoulou, E. Carrette, P. Boon, S. Vandenberghe, K. Vonck, and D. Marinazzo,

“Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization,”

Prog Neurobiol, vol. 121, pp. 19-35, Oct, 2014.

[51] C. M. Michel, and M. M. Murray, “Towards the utilization of EEG as a brain imaging tool,” Neuroimage, vol.

61, no. 2, pp. 371-85, Jun, 2012.

[52] “American Electroencephalographic Society guidelines for standard electrode position nomenclature,” J Clin Neurophysiol, vol. 8, no. 2, pp. 200-2, Apr, 1991.

[53] A. Bragin, I. Mody, C. L. Wilson, and J. Engel, Jr., “Local generation of fast ripples in epileptic brain,” J Neurosci, vol. 22, no. 5, pp. 2012-21, Mar 1, 2002.

[54] J. G. Jefferys, L. Menendez de la Prida, F. Wendling, A. Bragin, M. Avoli, I. Timofeev, and F. H. Lopes da Silva, “Mechanisms of physiological and epileptic HFO generation,” Prog Neurobiol, vol. 98, no. 3, pp. 250-64, Sep, 2012.

[55] R. Zelmann, J. M. Lina, A. Schulze-Bonhage, J. Gotman, and J. Jacobs, “Scalp EEG is not a blur: it can see high frequency oscillations although their generators are small,” Brain Topogr, vol. 27, no. 5, pp. 683-704, Sep, 2014.

[56] K. J. Staley, and F. E. Dudek, “Interictal spikes and epileptogenesis,” Epilepsy Curr, vol. 6, no. 6, pp. 199-202, Nov-Dec, 2006.

[57] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis, and B.

Vanrumste, “Review on solving the inverse problem in EEG source analysis,” J Neuroeng Rehabil, vol. 5, pp.

25, 2008.

[58] S. Rush, and D. A. Driscoll, “Current distribution in the brain from surface electrodes,” Anesth Analg, vol. 47, no. 6, pp. 717-23, Nov-Dec, 1968.

[59] M. S. Hamalainen, and J. Sarvas, “Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data,” IEEE Trans Biomed Eng, vol. 36, no. 2, pp. 165-71, Feb, 1989.

[60] Y. Yan, P. L. Nunez, and R. T. Hart, “Finite-element model of the human head: scalp potentials due to dipole sources,” Med Biol Eng Comput, vol. 29, no. 5, pp. 475-81, Sep, 1991.

[61] D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, “Conductivity tensor mapping of the human brain using diffusion tensor MRI,” Proc Natl Acad Sci U S A, vol. 98, no. 20, pp. 11697-701, Sep 25, 2001.

[62] D. Brunet, M. M. Murray, and C. M. Michel, “Spatiotemporal analysis of multichannel EEG: CARTOOL,”

Comput Intell Neurosci, vol. 2011, pp. 813870, 2011.

[63] L. Spinelli, S. G. Andino, G. Lantz, M. Seeck, and C. M. Michel, “Electromagnetic inverse solutions in anatomically constrained spherical head models,” Brain Topogr, vol. 13, no. 2, pp. 115-25, Winter, 2000.

[64] G. Birot, L. Spinelli, S. Vulliemoz, P. Megevand, D. Brunet, M. Seeck, and C. M. Michel, “Head model and electrical source imaging: a study of 38 epileptic patients,” Neuroimage Clin, vol. 5, pp. 77-83, 2014.

[65] C. Grova, J. Daunizeau, J. M. Lina, C. G. Benar, H. Benali, and J. Gotman, “Evaluation of EEG localization methods using realistic simulations of interictal spikes,” Neuroimage, vol. 29, no. 3, pp. 734-53, Feb 1, 2006.

[66] C. R. Rao, and C. K. Mitra, “Theory and application of constrained inverse of matrices,” Siam Journal on Applied Mathematics, vol. 24, no. 473-488, 1973.

[67] A. Tikhonov, and B. W. Silverman, Solutions to Ill-Posed Problems, Washington, DC: Winston, 1977.

[68] P. Hansen, “Analysis of discrete Ill-posed problems by means of the L-curve,” SIAM Review, vol. 34, no. 561-580, 1992.

[69] M. S. Hämäläinen, and R. J. Ilmoniemi, “Interpreting measured magnetic fields of the brain: estimates of current distributions,” Technical Report TKK-F-A559, Helsinki University of Technology, 1984.

[70] R. D. Pascual-Marqui, “Review of methods for solving the EEG inverse problem ” International Journal of Bioelectromagnetism, vol. 1, pp. 75-86, 1999.

[71] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain,” Int J Psychophysiol, vol. 18, no. 1, pp. 49-65, Oct, 1994.

[72] R. Grave de Peralta Menendez, M. M. Murray, C. M. Michel, R. Martuzzi, and S. L. Gonzalez Andino,

“Electrical neuroimaging based on biophysical constraints,” Neuroimage, vol. 21, no. 2, pp. 527-39, Feb, 2004.

[73] K. Sekihara, and S. S. Nagarajan, Neuromagnetic source reconstruction and inverse modeling. In: He B, editor. Modeling and Imaging of Bioelectric Activity - Principles and Applications., New York: Kluwer Academic/Plenum Publishers, 2004.

[74] K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita, “Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique,” IEEE Trans Biomed Eng, vol. 48, no. 7, pp. 760-71, Jul, 2001.

[75] S. Baillet, and L. Garnero, “A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem,” IEEE Trans Biomed Eng, vol. 44, no. 5, pp. 374-85, May, 1997.

[76] D. M. Schmidt, J. S. George, and C. C. Wood, “Bayesian inference applied to the electromagnetic inverse problem,” Hum Brain Mapp, vol. 7, no. 3, pp. 195-212, 1999.

[77] V. Brodbeck, L. Spinelli, A. M. Lascano, C. Pollo, K. Schaller, M. I. Vargas, M. Wissmeyer, C. M. Michel, and M. Seeck, “Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI,” Epilepsia, vol. 51, no. 4, pp. 583-91, Apr, 2010.

[78] C. M. Michel, G. Lantz, L. Spinelli, R. G. De Peralta, T. Landis, and M. Seeck, “128-channel EEG source imaging in epilepsy: clinical yield and localization precision,” J Clin Neurophysiol, vol. 21, no. 2, pp. 71-83, Mar-Apr, 2004.

[79] M. Gavaret, J. M. Badier, P. Marquis, F. Bartolomei, and P. Chauvel, “Electric source imaging in temporal lobe epilepsy,” J Clin Neurophysiol, vol. 21, no. 4, pp. 267-82, Jul-Aug, 2004.

[80] M. Oliva, S. Meckes-Ferber, A. Roten, P. Desmond, R. J. Hicks, and T. J. O'Brien, “EEG dipole source localization of interictal spikes in non-lesional TLE with and without hippocampal sclerosis,” Epilepsy Res, vol. 92, no. 2-3, pp. 183-90, Dec, 2010.

[81] P. E. Coutin-Churchman, J. Y. Wu, L. L. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin Neurophysiol, vol. 123, no. 3, pp. 471-85, Mar, 2012.

[82] H. J. Huppertz, S. Hoegg, C. Sick, C. H. Lucking, J. Zentner, A. Schulze-Bonhage, and R. Kristeva-Feige,

“Cortical current density reconstruction of interictal epileptiform activity in temporal lobe epilepsy,” Clin Neurophysiol, vol. 112, no. 9, pp. 1761-72, Sep, 2001.

[83] V. Brodbeck, A. M. Lascano, L. Spinelli, M. Seeck, and C. M. Michel, “Accuracy of EEG source imaging of epileptic spikes in patients with large brain lesions,” Clin Neurophysiol, vol. 120, no. 4, pp. 679-85, Apr, 2009.

[84] G. Ramantani, M. Dumpelmann, L. Koessler, A. Brandt, D. Cosandier-Rimele, J. Zentner, A. Schulze-Bonhage, and L. G. Maillard, “Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources,” Epilepsia, vol. 55, no. 2, pp. 278-88, Feb, 2014.

[85] D. Nayak, A. Valentin, G. Alarcon, J. J. Garcia Seoane, F. Brunnhuber, J. Juler, C. E. Polkey, and C. D.

Binnie, “Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges,” Clin Neurophysiol, vol. 115, no. 6, pp. 1423-35, Jun, 2004.

[86] G. Lantz, L. Spinelli, M. Seeck, R. G. de Peralta Menendez, C. C. Sottas, and C. M. Michel, “Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study,”

J Clin Neurophysiol, vol. 20, no. 5, pp. 311-9, Sep-Oct, 2003.

[87] G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?,” Clin Neurophysiol, vol. 114, no. 1, pp. 63-9, Jan, 2003.

[88] K. Kaiboriboon, H. O. Luders, M. Hamaneh, J. Turnbull, and S. D. Lhatoo, “EEG source imaging in epilepsy--practicalities and pitfalls,” Nat Rev Neurol, vol. 8, no. 9, pp. 498-507, Sep, 2012.

[89] S. P. Ahlfors, J. Han, J. W. Belliveau, and M. S. Hamalainen, “Sensitivity of MEG and EEG to source orientation,” Brain Topogr, vol. 23, no. 3, pp. 227-32, Sep, 2010.

[90] R. Hari, "Magnetoencephalography: methods and applications," Niedermeyer’s Electroencephalography:

Basic Principles, Clinical Applications and Related Fields, D. L. Schomer and F. H. Lopes da Silva, eds., pp.

865–900, Philadelphia: Lippincott Williams & Wilkins, 2011.

[91] A. K. Liu, A. M. Dale, and J. W. Belliveau, “Monte Carlo simulation studies of EEG and MEG localization accuracy,” Hum Brain Mapp, vol. 16, no. 1, pp. 47-62, May, 2002.

[92] S. Mori, and J. Zhang, “Principles of diffusion tensor imaging and its applications to basic neuroscience research,” Neuron, vol. 51, no. 5, pp. 527-39, Sep 7, 2006.

[93] P. J. Basser, and C. Pierpaoli, “Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI,” J Magn Reson B, vol. 111, no. 3, pp. 209-19, Jun, 1996.

[94] K. J. Friston, C. D. Frith, and R. Frackowiak, “Time-dependent changes in effective connectivity measured with PET,” Hum Brain Mapp, vol. 1, pp. 69-79, 1993.

[95] K. Friston, R. Moran, and A. K. Seth, “Analysing connectivity with Granger causality and dynamic causal modelling,” Curr Opin Neurobiol, vol. 23, no. 2, pp. 172-8, Apr, 2013.

[96] O. David, S. J. Kiebel, L. M. Harrison, J. Mattout, J. M. Kilner, and K. J. Friston, “Dynamic causal modeling of evoked responses in EEG and MEG,” Neuroimage, vol. 30, no. 4, pp. 1255-72, May 1, 2006.

[97] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” Neuroimage, vol. 19, no. 4, pp. 1273-302, Aug, 2003.

[98] A. J. Tomarken, and N. G. Waller, “Structural equation modeling: strengths, limitations, and misconceptions,”

Annu Rev Clin Psychol, vol. 1, pp. 31-65, 2005.

[99] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Identifying true brain interaction from EEG data using the imaginary part of coherency,” Clin Neurophysiol, vol. 115, no. 10, pp. 2292-307, Oct, 2004.

[100] A. Ewald, L. Marzetti, F. Zappasodi, F. C. Meinecke, and G. Nolte, “Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space,” Neuroimage, vol. 60, no. 1, pp.

476-88, Mar, 2012.

[101] K. J. Blinowska, “Review of the methods of determination of directed connectivity from multichannel data,”

Med Biol Eng Comput, vol. 49, no. 5, pp. 521-9, May, 2011.

[102] R. Kus, M. Kaminski, and K. J. Blinowska, “Determination of EEG activity propagation: pair-wise versus multichannel estimate,” IEEE Trans Biomed Eng, vol. 51, no. 9, pp. 1501-10, Sep, 2004.

[103] M. A. Brazier, “Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations,”

Exp Neurol, vol. 36, no. 2, pp. 263-72, Aug, 1972.

[104] P. H. Boeijinga, and F. H. Lopes da Silva, “A new method to estimate time delays between EEG signals applied to beta activity of the olfactory cortical areas,” Electroencephalogr Clin Neurophysiol, vol. 73, no. 3, pp. 198-205, Sep, 1989.

[105] J. Gotman, “Measurement of small time differences between EEG channels: method and application to epileptic seizure propagation,” Electroencephalogr Clin Neurophysiol, vol. 56, no. 5, pp. 501-14, Nov, 1983.

[106] G. Jenkins, and D. Watts, Spectral Analysis and its Applications, San Francisco, USA: Holden-Day, 1969.

[107] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey, and M. W. Woolrich, “Network modelling methods for FMRI,” Neuroimage, vol. 54, no. 2, pp. 875-91, Jan 15, 2011.

[108] A. Neumaier, and T. Schneider, “Estimation of parameters and eigenmodes of multivariate autoregressive models,” ACM Trans. Math. Softw., vol. 27, no. 1, pp. 27-57, 2001.

[109] N. Levinson, “The wiener RMS (root-mean-square) error criterion in Filter design and prediction,” J. Math.

Phys., vol. 25, pp. 261-278, 1947.

[110] A. H. Nuttall, “Multivariate linear predictive spectral analysis employing weighted forward and backward averaging: A generalization of Burg's Algorithm',” NUSC technical report 5501, 1976.

[111] A. Schlögl, “A comparison of multivariate autoregressive estimators,” Signal Processing, vol. 86, pp. 2426-2429, 2006.

[112] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, vol.

[112] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, vol.