• Aucun résultat trouvé

The vertical structure and hydrodynamics of water bodies are key parameters controlling fluxes and shaping ecosystem dynamics. This is especially true for meromictic lakes due to the vertical stratification of dissolved salts, temperature and other molecules including oxygen and carbon dioxide. During my PhD-project, I highlighted and confirmed the important role of motile PSB Chromatium okenii for the ecosystem of Lake Cadagno. In particular, the ability of this species to induce bioconvection leads to new and unexplored questions for the investigation of relevant ecological and biological consequences.

Supported by the studies conducted in my project, future research projects at Lake Cadagno will focus on the detailed environmental drivers of bioconvection and the impacts of this process for microbial ecophysiology in the chemocline. Future studies may demonstrate that bioconvection influences the microenvironment in the chemocline, providing a quantifiable fitness advantage to C. okenii. They may also reveal that these changes have ramifications for biogeochemical cycles at the ecosystem scale. The ultimate question that requires addressing is:

does bioconvection provide an advantage for C. okenii over non-motile species of phototrophic sulfur bacteria in the chemocline? As previously mentioned, flow cytometry activated cell sorting will produce high-resolution information on the ecophysiology of C. okenii and Chlorobium spp. at the cellular level and in real-time. This information will be used to evaluate changes in fitness (rates of 14CO2 fixation and H2S consumption), and specific gene expression (using transcriptomics) of C. okenii and Chlorobium spp. populations during periods of occurrence and absence of bioconvection. Gene expression analysis might also aid in determining changes in metabolic activity and coupling of phototrophic and chemotrophic reactions. It may also confirm or refute the relevance of QS communication for the initiation of bioconvetion. To expand and complete the analysis of ecophysiological changes in C. okenii derived by bioconvection, meta-transcriptomic could be used to study functions and activities of

the complete set of transcript (RNAseq) from environmental samples (185). Moreover, large-scale shotgun sequencing may reveal novel genes involved in bioconvection to understand why the process is present under particular conditions but not others in the chemocline of Lake Cadagno.

This future research will considerably increase our knowledge on the coexistence strategies used by anoxygenic phototrophic sulfur bacteria in the chemocline of Lake Cadagno and other aquatic ecosystems, and at the same time expand our understanding on the influences that this coexistence can exert on the environment. Besides the presented findings, my observations will represent a reference case to which future observations can be compared.

REFERENCES

1. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority. Proc Natl Acad Sci [Internet].

1998;95(12):6578–83. Available from: http://www.pnas.org/cgi/content/short/95/12/6578

2. Singh BK, Campbell CD, Sorenson SJ, Zhou J. Soil genomics. Nat Rev Microbiol [Internet].

2009;7(10):756–756. Available from: http://www.nature.com/doifinder/10.1038/nrmicro2119-c1

3. Rastogi G, Sani RK. Microbes and Microbial Technology. Ahmad I, Ahmad F, Pichtel J, editors. 2011 [cited 2014 Feb 20];29–58. Available from: http://link.springer.com/10.1007/978-1-4419-7931-5

4. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A Guide to the Natural History of Freshwater Lake Bacteria [Internet]. Vol. 75, Microbiology and Molecular Biology Reviews. 2011. 14-49 p. Available from: http://mmbr.asm.org/cgi/doi/10.1128/MMBR.00028-10

5. Gulati RD, Zadereev ES, Degermendzhi Editors AG. Ecological Studies 228 Ecology of Meromictic Lakes.

6. Halm H, Musat N, Lam P, Langlois R, Musat F, Peduzzi S, et al. Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol. 2009;11(8):1945–

58.

7. Camacho A, Erez J, Chicote A, Florín M, Squires MM, Lehmann C, et al. Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web. Aquat Sci. 2001;63(1):91–106.

8. Lauro FM, DeMaere MZ, Yau S, Brown M V, Ng C, Wilkins D, et al. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J [Internet]. 2011;5(5):879–95. Available from:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3105772&tool=pmcentrez&rendertype=abstract

9. Parkin TB, Brock TD. The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol Oceanogr [Internet]. 1981;26(5):880–90. Available from:

http://www.aslo.org/lo/toc/vol_26/issue_5/0880.html

10. Overmann J, Tuschak C. Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol.

1997;167(5):302–9.

11. Bengtsson L, Fortin V, Gronewold AD, Tanino Y, Surridge B, Watson N, et al. Water Framework Directive.

In: Encyclopedia of Lakes and Reservoirs [Internet]. 2012. p. 872–6. Available from:

http://eprints.lancs.ac.uk/51615/%5Cnhttp://www.springerlink.com/index/10.1007/978-1-4020-4410-6_217

12. Casamayor EO, Llirós M, Picazo A, Barberán A, Borrego CM, Camacho A. Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes. Aquat Sci. 2012;74(1):61–75.

13. Klepac-Ceraj V, Hayes CA, Gilhooly WP, Lyons TW, Kolter R, Pearson A. Microbial diversity under extreme euxinia: Mahoney Lake, Canada. Geobiology. 2012;10(3):223–35.

14. Andrei A-Ş, Robeson MS, Baricz A, Coman C, Muntean V, Ionescu A, et al. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME J [Internet].

2015;9(12):2642–56. Available from: http://www.nature.com/doifinder/10.1038/ismej.2015.60

15. Boehrer B, Schultze M. Stratification of lakes. Rev Geophys. 2008;46(2).

16. Overmann J. Ecology of phototrophic sulfur bacteria. Sulfur Metab Phototrophic Org [Internet].

2008;49(0):375–96. Available from: http://www.springerlink.com/content/j46302hut550t107/fulltext.pdf

17. Pjevac P, Korlevic M, Berg JS, Bura-Nakic E, Ciglenecki I, Amann R, et al. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake.

Appl Environ Microbiol. 2015;81(1):298–308.

18. Camacho A, Miracle MR, Vicente E. Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Vol. 157, Archiv für Hydrobiologie. 2003. p. 321–38.

19. Baatar B, Chiang PW, Rogozin DY, Wu YT, Tseng CH, Yang CY, et al. Bacterial communities of three saline meromictic lakes in Central Asia. PLoS One. 2016;11(3):1–22.

20. Noguerola I, Picazo A, Llirós M, Camacho A, Borrego CM. Diversity of freshwater epsilonproteobacteria and dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiol Ecol. 2015;91(7):1–15.

21. Camacho A, Walter XA, Picazo A, Zopfi J. Photoferrotrophy: Remains of an ancient photosynthesis in

modern environments. Front Microbiol. 2017;8(MAR).

22. Kuenen JG. Anammox bacteria: from discovery to application. Nat Rev Microbiol [Internet].

2008;6(4):320–6. Available from: http://www.nature.com/doifinder/10.1038/nrmicro1857

23. Del Don C, Hanselmann KW, Peduzzi R, Bachofen R. The meromictic alpine Lake Cadagno: Orographical and biogeochemical description. Aquat Sci. 2001;63(1):70–90.

24. Wirth SB, Gilli A, Niemann H, Dahl TW, Ravasi D, Sax N, et al. Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: The example of meromictic Lake Cadagno (Swiss Alps). Geochim Cosmochim Acta [Internet]. 2013;120:220–38. Available from: http://dx.doi.org/10.1016/j.gca.2013.06.017

25. Tonolla M, Peduzzi R, Hahn D. Long-term population dynamics of phototropic sulfur bacteria in the chemocline of Lage Cadagno, Switzerland. Appl Environ Microbiol. 2005;71(7):3544–50.

26. Bosshard PP, Santini Y, Grüter D, Stettler R, Bachofen R. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol. 2000;31(2):173–82.

27. Cristophoris PMA, Peduzzi S, Ruggeri-Bernardi N, Hahn D, Tonolla M. Fine scale analysis of shifts in bacterial community structure in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol.

2009;68(1):16–24.

28. Gregersen LH, Habicht KS, Peduzzi S, Tonolla M, Canfield DE, Miller M, et al. Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiol Ecol. 2009;70(1):30–41.

29. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J [Internet]. 2015;9(9):1991–2002. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/25679533%5Cnhttp://www.nature.com/doifinder/10.1038/ismej.2015 .12

30. Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D. Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol. 2004;63(2):161–70.

31. Tonolla M, Demarta A, Peduzzi R. In Situ Analysis of Phototrophic Sulfur Bacteria in the Chemocline of

Meromictic Lake Cadagno. 1999;65(3):1325–30.

32. Tonolla M, Storelli N, Danza F, Ravasi D, Peduzzi S, Posth NR, et al. Ecology of Meromictic Lakes [Internet]. Vol. 228. 2017. Available from: http://link.springer.com/10.1007/978-3-319-49143-1

33. Peduzzi S, Welsh A, Demarta A, Decristophoris P, Peduzzi R, Hahn D, et al. Thiocystis chemoclinalis sp.

nov. and thiocystis cadagnonensis sp. nov., motile purple sulfur bacteria isolated from the chemocline of a meromictic lake. Int J Syst Evol Microbiol. 2011;61(7):1682–7.

34. Peduzzi S, Storelli N, Welsh A, Peduzzi R, Hahn D, Perret X, et al. Candidatus “Thiodictyon

syntrophicum”, sp. nov., a new purple sulfur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp. Syst Appl Microbiol. 2012;35(3):139–

44.

35. Dahl C. Inorganic sulfur compounds as electron donors in purple sulfur bacteria. Sulfur Metab phototrophic Org [Internet]. 2008;289–317. Available from: http://www.springerlink.com/index/h1t9444t12ng0185.pdf

36. Dahl C, Hell R, Leustek T, Knaff D. Introduction to sulfur metabolism in phototrophic organisms. In: Sulfur Metabolism in Phototrophic Organisms [Internet]. 2008. p. 1–14. Available from:

http://www.springerlink.com/index/k9530741r6632kxu.pdf

37. Blankenship RE, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci.

1998;23(1991):94–7.

38. Kelly DP. Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Vol. 171, Archives of Microbiology. 1999. p. 219–29.

39. Overmann J, Garcia-Pichel F. The phototrophic way of life. Prokaryotes Prokaryotic Communities Ecophysiol. 2013;9783642301:203–57.

40. Bryant DA, Frigaard NU. Prokaryotic photosynthesis and phototrophy illuminated. Vol. 14, Trends in Microbiology. 2006. p. 488–96.

41. Overmann J, Cypionka H, Pfennig N. An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr. 1992;37(1):150–5.

42. Robert Tabita F. Research on carbon dioxide fixation in photosynthetic microorganisms (1971-present). In:

Photosynthesis Research. 2004. p. 315–32.

43. Griesbeck C, Hauska G, Schutz M. Biological sulfide oxidation: sulfide-quinone reductase (SQR), the primary reaction. Recent Res … [Internet]. 2000;4:179–203. Available from: http://www.biologie.uni-regensburg.de/Botanik/Hauska/sqr-review.pdf

44. Schutz M, Shahak Y, Padan E, Hauska G. Sulfide-Quinone Reductase from Rhodobacter capsulatus. J Biol Chem. 1997;272(15):9890–4.

45. Chan LK, Morgan-Kiss RM, Hanson TE. Functional analysis of three sulfide:Quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol. 2009;191(3):1026–34.

46. Pötter M, Steinbüchel A. Inclusions in Prokaryotes [Internet]. Vol. 1, Inclusions in Prokaryotes. 2006. 109-136 p. Available from: http://www.springerlink.com/index/10.1007/3-540-33774-1

47. Mas J, Gemerden H. Storage Products in Purple and Green Sulfur Bacteria. Anoxygenic Photosynth Bact [Internet]. 2004;973–90. Available from: http://dx.doi.org/10.1007/0-306-47954-0_45

48. Brune DC. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol. 1995;163(6):391–9.

49. Pattaragulwanit K, Brune DC, Truper HG, Dahl C. Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol. 1998;169(5):434–44.

50. Dahl C, Prange A. Bacterial Sulfur Globules: Occurrence, Structure and Metabolism. In: Inclusions in Prokaryotes [Internet]. 2006. p. 21–51. Available from: http://dx.doi.org/10.1007/3-540-33774-1_2

51. Mas J, van Gemerden H. Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol. 1987;146(4):362–9.

52. Tonolla M, Tonolla M, Peduzzi S, Peduzzi S, Hahn D, Hahn D, et al. Spatio-temporal distribution of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). FEMS Microbiol Ecol [Internet]. 2003;43(1):89–98. Available from: http://www.sciencedirect.com/science/article/B6T2V-46NX619-2/1/a0ae4c67e5a8027fce8c9697f9bf4e3c

53. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the

2008;105(46):17861–6. Available from: http://www.pnas.org/content/105/46/17861.short

54. Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, et al. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol. 2015;6(MAR):1–11.

55. Storelli N, Peduzzi S, Saad MM, Frigaard N-U, Perret X, Tonolla M. CO assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria. FEMS Microbiol Ecol [Internet]. 2013 May [cited 2015 May 19];84(2):421–32. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/23330958

56. Habicht KS, Miller M, Cox RP, Frigaard NU, Tonolla M, Peduzzi S, et al. Comparative proteomics and activity of a green sulfur bacterium through the water column of Lake Cadagno, Switzerland. Environ Microbiol. 2011;13(1):203–15.

57. Storelli N, Saad MM, Frigaard NU, Perret X, Tonolla M. Proteomic analysis of the purple sulfur bacterium Candidatus “Thiodictyon syntrophicum” strain Cad16T isolated from Lake Cadagno. EuPA Open

Proteomics [Internet]. 2014;2:17–30. Available from: http://dx.doi.org/10.1016/j.euprot.2013.11.010

58. Davey HM, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev [Internet]. 1996;60(4):641–96. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/8987359%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?a rtid=PMC239459

59. Davey HM, Winson MK. Using flow cytometry to quantify microbial heterogeneity. Curr Issues Mol Biol.

2003;5:9–15.

60. Wang Y, Hammes F, De Roy K, Verstraete W, Boon N. Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol [Internet]. 2010 Aug [cited 2014 Feb 2];28(8):416–

24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20541271

61. Vital M, Dignum M, Magic-Knezev A, Ross P, Rietveld L, Hammes F. Flow cytometry and adenosine tri-phosphate analysis: Alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems. Water Res [Internet]. 2012;46(15):4665–76. Available from:

http://dx.doi.org/10.1016/j.watres.2012.06.010

62. Prest EI, Hammes F, Kötzsch S, van Loosdrecht MCM, Vrouwenvelder JS. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res.

2013;47(19):7131–42.

63. Hammes F. New methods for assessing the safety of drinking water. Eawag News. 2008;(December):0–3.

64. Prest EI, Weissbrodt DG, Hammes F, Van Loosdrecht MCM, Vrouwenvelder JS. Long-term bacterial dynamics in a full-scale drinking water distribution system. PLoS One. 2016;11(10):1–20.

65. Gasol JM, Li Zweifel U, Peters F, Fuhrman JA, Hagström Å̊. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol.

1999;65(10):4475–83.

66. BD Biosciences. Multiparametric Analysis of Aquatic Organisms Using Flow Cytometry. BD Biosci.

2012;(May).

67. Veldhuis MJW, Kraay GW. Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Sci Mar. 2000;64(2):121–34.

68. Gasol JM, Giorgio P a DEL, del Giorgio P a. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar [Internet]. 2000;64(2):197–

224. Available from:

http://links.isiglobalnet2.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers

&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000088019800007%5Cnpapers2://publication/uui d/D6D95D52-6E18-4CF1-BFA5-B1A9C65CA5FC

69. Zucker RM. Practical flow cytometry: Third Edition,” Howard M. Shapiro. Wiley-Liss, Inc., 1995, 542 pp, 79.95. Environ Mol Mutagen [Internet]. 2003;26:185–185. Available from:

http://doi.wiley.com/10.1002/em.2850260213

70. Casamayor EO, Ferrera I, Cristina X, Borrego CM, Gasol JM. Flow cytometric identification and enumeration of photosynthetic sulfur bacteria and potential for ecophysiological studies at the single-cell level. Environ Microbiol [Internet]. 2007 Aug [cited 2014 Mar 3];9(8):1969–85. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/17635543

populations and communities. FEMS Microbiol Rev. 2010;34(4):554–87.

72. Koch C, Harnisch F, Schröder U, Müller S. Cytometric fingerprints: Evaluation of new tools for analyzing microbial community dynamics. Front Microbiol. 2014;5(JUN):1–12.

73. Zubkov M V, Fuchs BM, Tarran GA, Burkill PH, Amann R. High Rate of Uptake of Organic Nitrogen Compounds by Rrochlorococcus Cyanobacteria as a key to their dominance in Oligortrophic oceanic waters.

Appl Environ Microbiol. 2003;69(2):1299–304.

74. Finlay BJ, Maberly SC, Cooper JI. Microbial diversity and ecosystem function. Oikos. 1997;80(2):209–13.

75. Llirós M, Garciá-Armisen T, Darchambeau F, Morana C, Triadó-Margarit X, Inceoʇlu Ö, et al. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci Rep. 2015;5.

76. Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. ISME J [Internet]. 2011;5(10):1692–700. Available from:

http://dx.doi.org/10.1038/ismej.2011.32

77. Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG. Characterization of a Dense, Purple Sulfur Bacterial Layer in a Meromictic Salt Lake. Limnol Oceanogr. 1991;36(5):846–59.

78. Humayoun SB, Bano N, James T, Hollibaugh JT. Depth Distribution of Microbial Diversity in Mono Lake , a Meromictic Soda Lake in California Depth Distribution of Microbial Diversity in Mono Lake , a

Meromictic Soda Lake in California. Appl Environ Microbiol. 2003;69(2):1030–42.

79. Lehours AC, Evans P, Bardot C, Joblin K, Gérard F. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol. 2007;73(6):2016–9.

80. Peduzzi R, Demarta A, Tonolla M. The meromictic Lake Cadagno : an overview. Doc Ist ital idrobiol.

1998;63:1–4.

81. Danza F, Storelli N, Roman S, Lüdin S, Tonolla M. Dynamic cellular complexity of anoxygenic

phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. PlosONE. 2017;Accepted for publication.

82. Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R. In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl

Environ Microbiol. 2000;66(2):820–4.

83. Peduzzi S, Tonolla M, Hahn D. Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol. 2003;45(1):29–37.

84. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. The contribution of species richness and composition to bacterial services. Nature [Internet]. 2005;436(7054):1157–60. Available from:

http://www.nature.com/doifinder/10.1038/nature03891

85. Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor laboratory press. New York. 1982. 931–957 p.

86. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. correspondence QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr [Internet]. 2010;7(5):335–6. Available from:

http://dx.doi.org/10.1038/nmeth0510-335

87. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics.

2010;26(19):2460–1.

88. Sommer T, Danza F, Berg J, Sengupta A, Constantinescu G, Tokyay T, et al. Bacteria-induced mixing in natural waters. Geophys Res Lett [Internet]. 2017; Available from:

http://doi.wiley.com/10.1002/2017GL074868

89. Posth NR, Bristow LA, Cox RP, Habicht KS, Danza F, Tonolla M, et al. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno. Geobiology. 2017;(July):1–19.

90. Glöckner F-O, Fuchs BM, Amann R. Bacterioplankton composition in lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol. 1999;65(8):3721–6.

91. Zarda B, Hahn D, Chatzinotas A, Schonhuber W, Neef A, Amann RI, et al. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch Microbiol. 1997;168(3):185–92.

92. Fischer K, Hahn D, Amann RI, Daniel O, Zeyer J. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can J Microbiol Can Microbiol.

1995;41(8):666–73.

93. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Syst Appl Microbiol [Internet].

1992;15(4):593–600. Available from: http://www.sciencedirect.com/science/article/pii/S0723202011801219

94. Megonigal JP, Hines ME, Visscher PT. Anaerobic Metabolism:Linkages to Trace Gases and Aerobic Processes. Biogeochemistry. 2004;317–424.

95. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A

[Internet]. 2008;105(1):300–4. Available from: http://www.pnas.org/content/105/1/300.full

96. Zwart G, Hannen EJ Van, Kamst-van MP, Gucht K Van Der, Lindström ES, Wichelen V, et al. Rapid Screening for Freshwater Bacterial Groups by Using Reverse Line Blot Hybridization Rapid Screening for Freshwater Bacterial Groups by Using Reverse Line Blot Hybridization. 2003;69(10):5875–83.

97. Lindström ES, Vrede K, Leskinen E. Response of a member of the Verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availability. J Plankton Res. 2004;26(2):241–6.

98. Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, et al. Crenothrix are major methane consumers in stratified lakes. ISME J [Internet]. 2017;11(9):2124–40. Available from:

http://www.nature.com/doifinder/10.1038/ismej.2017.77

99. Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance. PLoS Comput Biol. 2012;8(10):16–8.

100. Oliverio AM, Katz LA. The dynamic nature of genomes across the tree of life. Genome Biol Evol.

2014;6(3):482–8.

101. van Gemerden H. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microb Ecol. 1974;1(1):104–19.

102. Tonolla M, Peduzzi R. Lake Cadagno, a Model for Microbial Ecology. Milieux extrêmes Cond vie en milieu Alp milieu Mar [Internet]. 2006;21–52. Available from:

http://www.piora.org/index.php?node=296&lng=1&rif=53a77ed493

103. MalinskyRushansky NZ, Berman T, Dubinsky Z. Seasonal photosynthetic activity of autotrophic picoplankton in Lake Kinneret, Israel. J Plankton Res. 1997;19(8):979–93.

104. Sogin ML, Sogin ML, Morrison HG, Morrison HG, Huber J a, Huber J a, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A [Internet].

2006;103(32):12115–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16880384

105. Blankenship RE, Olson JM, Miller M. Anoxygenic Photosynthetic Bacteria. Adv Photosynth [Internet].

2004;2:399–435. Available from: http://www.springerlink.com/index/10.1007/0-306-47954-0

106. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B. Ferrous Iron Oxidation by Anoxygenic Phototrophic Bacteria. Nature. 1993;362(6423):834–6.

107. Imhoff JF, Thiel V. Phylogeny and taxonomy of Chlorobiaceae. Vol. 104, Photosynthesis Research. 2010. p.

123–36.

108. Frigaard NU, Dahl C. Sulfur Metabolism in Phototrophic Sulfur Bacteria. Vol. 54, Advances in Microbial Physiology. 2008. p. 103–200.

109. Holkenbrink C, Barbas SO, Mellerup A, Otaki H, Frigaard NU. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiology. 2011;157(4):1229–39.

110. Lüthy L, Fritz M, Bachofen R, Lu L. In Situ Determination of Sulfide Turnover Rates in a Meromictic Alpine Lake These include : In Situ Determination of Sulfide Turnover Rates in a Meromictic Alpine Lake.

2000;66(2):712–7.

111. Vives-Rego J, Lebaron P, Caron Nebe-von. Current and future applications of £ ow cytometry in aquatic microbiology. FEMS Microbiol Rev. 2000;24(2000):429–48.

111. Vives-Rego J, Lebaron P, Caron Nebe-von. Current and future applications of £ ow cytometry in aquatic microbiology. FEMS Microbiol Rev. 2000;24(2000):429–48.

Documents relatifs