• Aucun résultat trouvé

Doc-mobility fellowship project

3.5 Further directions

89

3.5 Further directions

The auditory processing impairments we measure in 22q11.2 DS might be promoted by two main effects: local subtle structural and molecular brain alterations, and abnormal functional integration between the auditory brain areas. In this view, the future work should explore the link between cortical changes, functional connectivity, glutamate dysfunction and the

variability of the mismatch negativity response across ages in the 22q11.2 DS population with respect to the severity of social cognition symptoms.

3.6 Conclusion

In conclusion, we observe auditory neurophysiological abnormalities, namely reduced MMN response, in non-psychotic 22q11.2 deletion carriers that are not present in typically

developing individuals. Additionally, the deletion carriers additionally show increased N1 and reduced P300 responses, suggesting a pattern of abnormal auditory processing that might underly altered neuromodulation and might be specific to this clinical population rather than following the abnormal auditory pattern measured in patients with schizophrenia.

The reduced MMN might be explained by impaired prediction error rising from abnormal repetition suppression and by altered functional integration of the bottom-up\top-down interactions, being unrelated to the structural changes measured along the auditory pathway.

Further, MMN reduction is not related to lower IQ or to psychotic symptom, and thus

impaired auditory pitch procession might underly altered auditory emotion recognition, a key feature of social cognition.

These findings highlight that reduced MMN response is a promising index of abnormal auditory sensory processing that can add value to clinical assessments when aiming to verify the functional integrity of auditory pathways in 22q11.2 DS.

90

Appendix A

91

92

93

94

95

96

97

98

99

100

101

102

Bibliography :

1. Ross, C.A., et al. Neurobiology of Schizophrenia. Neuron, 2006. 52, 139-153 doi.org/10.1016/j.neuron.2006.09.015.

2. Rapoport, J.L., J.N. Giedd, and N. Gogtay Neurodevelopmental model of schizophrenia:

update 2012. Mol Psychiatry, 2012. 17, 1228-38 DOI: 10.1038/mp.2012.23.

3. Insel, T.R., Rethinking schizophrenia. Nature, 2010. 468(7321): p. 187-93.

4. Pantelis, C., et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. The Lancet, 2003. 361, 281-288 doi.org/10.1016/S0140-6736(03)12323-9.

5. Gee, D.G. and T.D. Cannon Prediction of conversion to psychosis: review and future directions. Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999), 2011. 33, s129-s142.

6. Fusar-Poli, P., et al. The psychosis high-risk state: a comprehensive state-of-the-art review.

JAMA Psychiatry, 2013. 70, 107-20 DOI: 10.1001/jamapsychiatry.2013.269.

7. Schneider, M., et al., Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry, 2014. 171(6): p. 627-39.

8. Guo, J.Y., J.D. Ragland, and C.S. Carter, Memory and cognition in schizophrenia. Mol Psychiatry, 2019. 24(5): p. 633-642.

9. Rihs, T.A., et al. Altered auditory processing in frontal and left temporal cortex in 22q11.2 deletion syndrome: a group at high genetic risk for schizophrenia. Psychiatry Res, 2013. 212, 141-9 DOI: 10.1016/j.pscychresns.2012.09.002.

10. Biria, M., et al. Visual processing deficits in 22q11.2 Deletion Syndrome. Neuroimage Clin, 2018. 17, 976-986 DOI: 10.1016/j.nicl.2017.12.028.

11. Fokstuen, S., et al., Velofacial hypoplasia (Sedlackova syndrome): a variant of velocardiofacial (Shprintzen) syndrome and part of the phenotypical spectrum of del 22q11.2. Eur J Pediatr, 2001. 160(1): p. 54-7.

12. Daw, S.C.M., et al., A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nature Genetics, 1996. 13(4): p. 458-460.

13. Baldini, A., F.G. Fulcoli, and E. Illingworth, Tbx1: Transcriptional and Developmental Functions. Curr Top Dev Biol, 2017. 122: p. 223-243.

14. Burn, J., et al., Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22q11. J Med Genet, 1993. 30(10): p. 822-4.

15. Momma, K., et al., Cardiac anomalies associated with a chromosome 22q11 deletion in patients with conotruncal anomaly face syndrome. Am J Cardiol, 1996. 78(5): p. 591-4.

16. Devriendt, K., et al. The annual incidence of DiGeorge/velocardiofacial syndrome. Journal of Medical Genetics, 1998. 35, 789-790 DOI: 10.1136/jmg.35.9.789-a.

17. Scambler, P.J. The 22q11 deletion syndromes. Hum Mol Genet, 2000. 9, 2421-6.

18. McDonald-McGinn, D.M., et al., 22q11.2 deletion syndrome. Nature reviews. Disease primers, 2015. 1: p. 15071-15071.

19. Lin, A., et al. Mapping 22q11.2 Gene Dosage Effects on Brain Morphometry. J Neurosci, 2017. 37, 6183-6199 DOI: 10.1523/jneurosci.3759-16.2017.

20. Meechan, D.W., et al. Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proceedings of the National Academy of Sciences, 2009. 106, 16434-16445 DOI: 10.1073/pnas.0905696106.

21. Michaelovsky, E., et al., Genotype-phenotype correlation in 22q11.2 deletion syndrome. BMC Med Genet, 2012. 13: p. 122.

22. Sun, D., et al., Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome:

Convergence with idiopathic psychosis and effects of deletion size. Molecular Psychiatry, 2018.

23. Karayiorgou, M., T.J. Simon, and J.A. Gogos 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci, 2010. 11, 402-416 24. Scambler, P.J., 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular

development. Pediatr Cardiol, 2010. 31(3): p. 378-90.

25. Flore, G., et al., Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cereb Cortex, 2017. 27(3): p. 2210-2225.

26. Renick, S.E., et al., The Mammalian Brain High-Affinity <span

class="sc">l</span>-Proline Transporter Is Enriched Preferentially in Synaptic Vesicles in a Subpopulation of Excitatory Nerve Terminals in Rat Forebrain. The Journal of Neuroscience, 1999. 19(1): p. 21.

27. Jonas, R.K., et al., Altered Brain Structure-Function Relationships Underlie Executive Dysfunction in 22q11.2 Deletion Syndrome. Molecular Neuropsychiatry, 2015. 1(4): p. 235-246.

28. Jonas, R.K., C.A. Montojo, and C.E. Bearden The 22q11.2 Deletion Syndrome as a Window into Complex Neuropsychiatric Disorders Over the Lifespan. Biological Psychiatry, 2014. 75, 351-360 DOI: 10.1016/j.biopsych.2013.07.019.

29. Shashi, V., et al., Altered development of the dorsolateral prefrontal cortex in chromosome 22q11.2 deletion syndrome: an in vivo proton spectroscopy study. Biological psychiatry, 2012. 72(8): p. 684-691.

30. da Silva Alves, F., et al., Proton magnetic resonance spectroscopy in 22q11 deletion syndrome. PloS one, 2011. 6(6): p. e21685.

31. Baker, K., et al. COMT Val108/158 Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biol Psychiatry, 2005. 58, 23-31 DOI:

10.1016/j.biopsych.2005.03.020.

32. Francisco, A.A., et al., Assessing auditory processing endophenotypes associated with Schizophrenia in individuals with 22q11.2 deletion syndrome. Translational Psychiatry, 2020.

10(1): p. 85.

33. Larsen, K.M., et al., 22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response. Schizophr Bull, 2018. 44(2): p. 388-397.

34. Meyer-Lindenberg, A., et al., Midbrain dopamine and prefrontal function in humans:

interaction and modulation by COMT genotype. Nature Neuroscience, 2005. 8(5): p. 594-596.

35. Paterlini, M., et al., Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005. 8(11): p.

1586-1594.

36. Goldman-Rakic, P.S., I.E.C. Muly, and G.V. Williams, D1 receptors in prefrontal cells and circuits. Brain Research Reviews, 2000. 31(2): p. 295-301.

37. Gothelf, D., et al., COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nature Neuroscience, 2005. 8(11): p. 1500-1502.

38. Zarchi, O., et al., Schizophrenia-like neurophysiological abnormalities in 22q11.2 deletion syndrome and their association to COMT and PRODH genotypes. J Psychiatr Res, 2013.

47(11): p. 1623-9.

39. Schofield, C.M., et al., Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex.

Neural development, 2011. 6: p. 11-11.

40. Stark, K.L., et al., Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet, 2008. 40(6): p. 751-60.

41. Sun, D., et al., Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome:

Convergence with idiopathic psychosis and effects of deletion size. Mol Psychiatry, 2018.

42. Villalón-Reina, J.E., et al., Altered white matter microstructure in 22q11.2 deletion syndrome:

a multisite diffusion tensor imaging study. Mol Psychiatry, 2019.

43. Swillen, A. and D. McDonald-McGinn, Developmental trajectories in 22q11.2 deletion.

American journal of medical genetics. Part C, Seminars in medical genetics, 2015. 169(2): p.

172-181.

44. Maeder, J., et al., Developmental trajectories of executive functions in 22q11.2 deletion syndrome. J Neurodev Disord, 2016. 8: p. 10.

45. De Smedt, B., et al., Mathematical learning disabilities in children with 22q11.2 deletion syndrome: a review. Dev Disabil Res Rev, 2009. 15(1): p. 4-10.

46. Gothelf, D., et al., Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry, 2007. 164(4): p. 663-9.

47. Vorstman, J.A., et al., Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry, 2015. 72(4): p. 377-85.

48. Weinberger, R., et al., Neurocognitive profile in psychotic versus nonpsychotic individuals with 22q11.2 deletion syndrome. Eur Neuropsychopharmacol, 2016. 26(10): p. 1610-8.

49. Shapiro, H.M., L.M. Wong, and T.J. Simon, A cross-sectional analysis of the development of response inhibition in children with chromosome 22q11.2 deletion syndrome. Front

Psychiatry, 2013. 4: p. 81.

50. Campbell, L.E., et al., Executive functions and memory abilities in children with 22q11.2 deletion syndrome. Aust N Z J Psychiatry, 2010. 44(4): p. 364-71.

51. Norkett, E.M., et al., Social cognitive impairment in 22q11 deletion syndrome: A review.

Psychiatry Res, 2017. 253: p. 99-106.

52. Green, M.F., et al., Social cognition in schizophrenia, Part 1: performance across phase of illness. Schizophr Bull, 2012. 38(4): p. 854-64.

53. Bostelmann, M., et al., Does differential visual exploration contribute to visual memory impairments in 22q11.2 microdeletion syndrome? J Intellect Disabil Res, 2017. 61(12): p.

1174-1184.

54. Zaharia, A., et al., Face processing in 22q11.2 deletion syndrome: atypical development and visual scanning alterations. J Neurodev Disord, 2018. 10(1): p. 26.

55. Campbell, L.E., et al., Is theory of mind related to social dysfunction and emotional problems in 22q11.2 deletion syndrome (velo-cardio-facial syndrome)? J Neurodev Disord, 2011. 3(2):

p. 152-61.

56. Swillen, A., E. Moss, and S. Duijff Neurodevelopmental outcome in 22q11.2 deletion syndrome and management. Am J Med Genet A, 2018. DOI: 10.1002/ajmg.a.38709.

57. Wong, L.M., et al. Children with chromosome 22q11.2 deletion syndrome exhibit impaired spatial working memory. Am J Intellect Dev Disabil, 2014. 119, 115-32 DOI: 10.1352/1944-7558-119.2.115.

58. Tang, S.X., et al. Emergent, remitted and persistent psychosis-spectrum symptoms in 22q11.2 deletion syndrome. Translational Psychiatry, 2017. 7, e1180 DOI: 10.1038/tp.2017.157 59. Niarchou, M., et al., Attention Deficit Hyperactivity Disorder Symptoms and Psychosis in

22q11.2 Deletion Syndrome. Schizophrenia Bulletin, 2017. 44(4): p. 824-833.

60. Niarchou, M., et al., The clinical presentation of attention deficit-hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet, 2015. 168(8): p. 730-8.

61. Antshel, K.M., et al., The longitudinal course of attention deficit/hyperactivity disorder in velo-cardio-facial syndrome. J Pediatr, 2013. 163(1): p. 187-93.e1.

62. Achim, A.M., et al., How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull, 2011. 37(4): p. 811-21.

63. Baker, K. and J.A.S. Vorstman, Is there a core neuropsychiatric phenotype in 22q11.2 deletion syndrome? Current Opinion in Neurology, 2012. 25(2).

64. Weisman, O., et al., Subthreshold Psychosis in 22q11.2 Deletion Syndrome: Multisite Naturalistic Study. Schizophrenia Bulletin, 2017. 43(5): p. 1079-1089.

65. Teufel, C. and P.C. Fletcher, Publisher Correction: Forms of prediction in the nervous system.

Nature Reviews Neuroscience, 2020. 21(5): p. 297-297.

66. Mancini, V., et al., Abnormal development and dysconnectivity of distinct thalamic nuclei in patients with 22q11.2 deletion syndrome experiencing auditory hallucinations. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.

67. Mancini, V., et al., Positive psychotic symptoms are associated with divergent developmental trajectories of hippocampal volume during late adolescence in patients with 22q11DS. Mol Psychiatry, 2019.

68. Kaiser, S., et al., Individual negative symptoms and domains – Relevance for assessment, pathomechanisms and treatment. Schizophrenia Research, 2017. 186: p. 39-45.

69. Lee, J.S., et al., Neural Basis of Anhedonia and Amotivation in Patients with Schizophrenia:

The Role of Reward System. Current neuropharmacology, 2015. 13(6): p. 750-759.

70. Gur, R.E., et al., Flat Affect in Schizophrenia: Relation to Emotion Processing and Neurocognitive Measures. Schizophrenia Bulletin, 2006. 32(2): p. 279-287.

71. Cohen, A.S., et al., Speech deficits in serious mental illness: A cognitive resource issue?

Schizophrenia Research, 2014. 160(1): p. 173-179.

72. Schneider, M., et al., Preliminary structure and predictive value of attenuated negative symptoms in 22q11.2 deletion syndrome. Psychiatry Research, 2012. 196(2): p. 277-284.

73. Brown, R.G. and G. Pluck, Negative symptoms: the ‘pathology’ of motivation and goal-directed behaviour. Trends in Neurosciences, 2000. 23(9): p. 412-417.

74. Dubourg, L., et al., Goal-Directed-Behavior in 22q11.2 Deletion Syndrome: Implication for Social Dysfunctions and the Emergence of Negative Symptoms. Frontiers in psychiatry, 2020.

11: p. 230-230.

75. Tang, S.X. and R.E. Gur, Longitudinal perspectives on the psychosis spectrum in 22q11.2 deletion syndrome. Am J Med Genet A, 2018. 176(10): p. 2192-2202.

76. Tang, S.X., et al., Emergent, remitted and persistent psychosis-spectrum symptoms in 22q11.2 deletion syndrome. Translational Psychiatry, 2017. 7(7): p. e1180-e1180.

77. Van, L., E. Boot, and A.S. Bassett, Update on the 22q11.2 deletion syndrome and its relevance to schizophrenia. Curr Opin Psychiatry, 2017. 30(3): p. 191-196.

78. Eliez, S., et al., Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatry, 2000. 157(3): p. 409-15.

79. Chow, E.W.C., et al., Structural brain abnormalities in patients with schizophrenia and 22q11 deletion syndrome. Biological psychiatry, 2002. 51(3): p. 208-215.

80. Bearden, C.E., et al., Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex, 2007. 17(8): p. 1889-98.

81. Kates, W.R., et al., Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2). J Child Neurol, 2004. 19(5): p. 337-42.

82. Tan, G.M., et al., Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome). Schizophr Res, 2009. 115(2-3): p.

173-81.

83. Rogdaki, M., et al., Magnitude and heterogeneity of brain structural abnormalities in 22q11.2 deletion syndrome: a meta-analysis. Molecular Psychiatry, 2020.

84. Chow, E.W., et al. Association of schizophrenia in 22q11.2 deletion syndrome and gray matter volumetric deficits in the superior temporal gyrus. Am J Psychiatry, 2011. 168, 522-9 DOI: 10.1176/appi.ajp.2010.10081230.

85. van Amelsvoort, T., et al., Brain anatomy in adults with velocardiofacial syndrome with and without schizophrenia: preliminary results of a structural magnetic resonance imaging study.

Arch Gen Psychiatry, 2004. 61(11): p. 1085-96.

86. Kates, W.R., et al., Neuroanatomic predictors to prodromal psychosis in velocardiofacial syndrome (22q11.2 deletion syndrome): a longitudinal study. Biol Psychiatry, 2011. 69(10): p.

945-52.

87. Winkler, A.M., et al., Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage, 2010. 53(3): p. 1135-46.

88. Rakic, P., Specification of cerebral cortical areas. Science, 1988. 241(4862): p. 170.

89. Harrell, W., et al., Frontal Hypoactivation During a Working Memory Task in Children With 22q11 Deletion Syndrome. J Child Neurol, 2017. 32(1): p. 94-99.

90. Larsen, K.M., et al., Alteration of functional brain architecture in 22q11.2 deletion syndrome - Insights into susceptibility for psychosis. Neuroimage, 2019. 190: p. 154-171.

91. Debbané, M., et al., Resting-state networks in adolescents with 22q11.2 deletion syndrome:

Associations with prodromal symptoms and executive functions. Schizophrenia Research, 2012. 139(1): p. 33-39.

92. Tomescu, M.I., et al., Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia? Schizophrenia Research, 2014. 157(1): p. 175-181.

93. Tang, S.X., et al., The Psychosis Spectrum in 22q11.2 Deletion Syndrome Is Comparable to That of Nondeleted Youths. Biol Psychiatry, 2017. 82(1): p. 17-25.

94. Green, T., et al., Psychiatric Disorders and Intellectual Functioning Throughout Development in Velocardiofacial (22q11.2 Deletion) Syndrome. Journal of the American Academy of Child

& Adolescent Psychiatry, 2009. 48(11): p. 1060-1068.

95. Gur, R.E., et al. A neurogenetic model for the study of schizophrenia spectrum disorders: the International 22q11.2 Deletion Syndrome Brain Behavior Consortium. Mol Psychiatry, 2017.

DOI: 10.1038/mp.2017.161.

96. Rapoport, J.L., J.N. Giedd, and N. Gogtay, Neurodevelopmental model of schizophrenia:

update 2012. Molecular Psychiatry, 2012. 17(12): p. 1228-1238.

97. Schmitt, J.E., et al., Aberrant Cortical Morphometry in the 22q11.2 Deletion Syndrome. Biol Psychiatry, 2015. 78(2): p. 135-43.

98. Braff, D.L., et al., Deconstructing Schizophrenia: An Overview of the Use of Endophenotypes in Order to Understand a Complex Disorder. Schizophrenia Bulletin, 2006. 33(1): p. 21-32.

99. Kollmeier, B., Anatomy, Physiology and Function of the Auditory System, in Handbook of Signal Processing in Acoustics, D. Havelock, S. Kuwano, and M. Vorländer, Editors. 2008, Springer New York: New York, NY. p. 147-158.

100. Vasquez-Lopez, S.A., et al., Thalamic input to auditory cortex is locally heterogeneous but globally tonotopic. eLife, 2017. 6: p. e25141.

101. Hu, B., Functional organization of lemniscal and nonlemniscal auditory thalamus. Exp Brain Res, 2003. 153(4): p. 543-9.

102. Ohga, S., et al., Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice. Cerebral Cortex, 2018. 28(12): p. 4424-4439.

103. Chou, X.-l., et al., Contextual and cross-modality modulation of auditory cortical processing through pulvinar mediated suppression. eLife, 2020. 9: p. e54157.

104. Suga, N. and X. Ma, Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience, 2003. 4(10): p. 783-794.

105. Moore, J.K., Maturation of Human Auditory Cortex: Implications for Speech Perception.

Annals of Otology, Rhinology & Laryngology, 2002. 111(5_suppl): p. 7-10.

106. Takesian, A.E., et al., Inhibitory circuit gating of auditory critical-period plasticity. Nature Neuroscience, 2018. 21(2): p. 218-227.

107. Lakatos, P., et al., The Thalamocortical Circuit of Auditory Mismatch Negativity. Biological Psychiatry, 2020. 87(8): p. 770-780.

108. Lee, A.J., et al., Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits. Cerebral Cortex, 2014. 25(8): p. 2114-2126.

109. Meng, X., et al., Sublaminar Subdivision of Mouse Auditory Cortex Layer 2/3 Based on Functional Translaminar Connections. J Neurosci, 2017. 37(42): p. 10200-10214.

110. Zhou, M., et al., Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat Neurosci, 2014. 17(6): p. 841-50.

111. Slater, B.J., A.M. Willis, and D.A. Llano, Evidence for layer-specific differences in auditory corticocollicular neurons. Neuroscience, 2013. 229: p. 144-54.

112. Bastos, A.M., et al., Canonical microcircuits for predictive coding. Neuron, 2012. 76(4): p.

695-711.

113. Karnath, H.-O., New insights into the functions of the superior temporal cortex. Nature Reviews Neuroscience, 2001. 2(8): p. 568-576.

114. Zatorre, R.J., P. Belin, and V.B. Penhune, Structure and function of auditory cortex: music and speech. Trends Cogn Sci, 2002. 6(1): p. 37-46.

115. Bizley, J.K. and Y.E. Cohen, The what, where and how of auditory-object perception. Nat Rev Neurosci, 2013. 14(10): p. 693-707.

116. Sakata, S. and K.D. Harris, Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 2009. 64(3): p. 404-18.

117. Chun, S., et al. Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science, 2014. 344, 1178-82 DOI: 10.1126/science.1253895.

118. Cantonas, L.M., et al., Abnormal development of early auditory processing in 22q11.2 Deletion Syndrome. Translational Psychiatry, 2019. 9(1): p. 138.

119. Picton, T.W., et al., Guidelines for using human event-related potentials to study cognition:

recording standards and publication criteria. Psychophysiology, 2000. 37(2): p. 127-52.

120. Joos, K., et al., From sensation to percept: the neural signature of auditory event-related potentials. Neurosci Biobehav Rev, 2014. 42: p. 148-56.

121. Picton, T.W., et al., Human auditory evoked potentials. I: Evaluation of components.

Electroencephalography and Clinical Neurophysiology, 1974. 36: p. 179-190.

122. Ponton, C.W., et al., Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol, 2000. 111(2): p. 220-36.

123. Moore, J.K. and F.H. Linthicum, Jr., The human auditory system: a timeline of development.

Int J Audiol, 2007. 46(9): p. 460-78.

124. Light, G.A., et al., Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS One, 2012. 7(7): p.

e39434.

125. Grunwald, T., et al., Neuronal substrates of sensory gating within the human brain. Biol Psychiatry, 2003. 53(6): p. 511-9.

126. Mayer, A.R., et al., The neural networks underlying auditory sensory gating. Neuroimage, 2009. 44(1): p. 182-9.

127. Vorstman, J.A.S., et al., Proline Affects Brain Function in 22q11DS Children with the Low Activity COMT158 Allele. Neuropsychopharmacology, 2009. 34(3): p. 739-746.

128. Luck, S.J., Event-related potentials, in APA handbook of research methods in psychology, Vol 1: Foundations, planning, measures, and psychometrics. 2012, American Psychological Association: Washington, DC, US. p. 523-546.

129. Rosburg, T., Auditory N100 gating in patients with schizophrenia: A systematic meta-analysis. Clinical Neurophysiology, 2018. 129(10): p. 2099-2111.

130. Larsen, K.M., et al. Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome. Schizophr Res, 2018. DOI: 10.1016/j.schres.2018.01.026.

131. Mantysalo, S. and R. Naatanen The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biol Psychol, 1987. 24, 183-95.

132. Naatanen, R., et al. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol, 2007. 118, 2544-90 DOI:

10.1016/j.clinph.2007.04.026.

133. Garrido, M.I., et al. The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 2009. 120, 453-463 DOI: 10.1016/j.clinph.2008.11.029.

134. Paavilainen, P. The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol, 2013. 88, 109-23 DOI: 10.1016/j.ijpsycho.2013.03.015.

135. Giard, M.-H., et al. Brain Generators Implicated in the Processing of Auditory Stimulus Deviance: A Topographic Event-Related Potential Study. Psychophysiology, 1990. 27, 627-640 DOI: 10.1111/j.1469-8986.1990.tb03184.x.

136. Rosburg, T., et al. Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain, 2005. 128, 819-828 DOI: 10.1093/brain/awh442.

137. El Karoui, I., et al. Event-Related Potential, Time-frequency, and Functional Connectivity Facets of Local and Global Auditory Novelty Processing: An Intracranial Study in Humans.

Cereb Cortex, 2015. 25, 4203-12 DOI: 10.1093/cercor/bhu143.

138. Molholm, S., et al. The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex, 2005. 15, 545-51 DOI: 10.1093/cercor/bhh155.

139. Doeller, C.F., et al. Prefrontal cortex involvement in preattentive auditory deviance detection:

neuroimaging and electrophysiological evidence. Neuroimage, 2003. 20, 1270-82 DOI:

10.1016/s1053-8119(03)00389-6.

140. Opitz, B., et al. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage, 2002. 15, 167-74 DOI:

10.1006/nimg.2001.0970.

141. Gaebler, A.J., et al., Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia. Brain, 2015. 138(Pt 5): p. 1410-23.

142. Umbricht, D. and S. Krljes Mismatch negativity in schizophrenia: a meta-analysis.

Schizophrenia Research, 2005. 76, 1-23

143. Erickson, M.A., A. Ruffle, and J.M. Gold A Meta-Analysis of Mismatch Negativity in

Schizophrenia: From Clinical Risk to Disease Specificity and Progression. Biol Psychiatry, 2016.

79, 980-7 DOI: 10.1016/j.biopsych.2015.08.025.

144. Cheour, M., et al., Mismatch negativity (MMN) as an index of auditory sensory memory deficit in cleft-palate and CATCH syndrome children. Neuroreport, 1998. 9(12): p. 2709-12.

145. Polich, J., Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 2007. 118(10): p. 2128-2148.

146. Winterer, G., et al., P300 and genetic risk for schizophrenia. Arch Gen Psychiatry, 2003.

60(11): p. 1158-67.

147. Mannarelli, D., et al., Attentional functioning in individuals with 22q11 deletion syndrome:

insight from ERPs. J Neural Transm (Vienna), 2018. 125(7): p. 1043-1052.

148. Uhlhaas, P.J. and W. Singer, Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. Biol Psychiatry, 2015. 77(12): p. 1001-9.

149. Thuné, H., M. Recasens, and P.J. Uhlhaas, The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia: A Meta-analysis. JAMA Psychiatry, 2016. 73(11): p. 1145-1153.

150. Rass, O., et al., Auditory steady state response in the schizophrenia, first-degree relatives, and schizotypal personality disorder. Schizophrenia research, 2012. 136(1-3): p. 143-149.

151. Umbricht, D., et al. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in

schizophrenia. Arch Gen Psychiatry, 2000. 57, 1139-47.

152. Oranje, B., et al. The effects of a sub-anaesthetic dose of ketamine on human selective attention. Neuropsychopharmacology, 2000. 22, 293-302 DOI:

10.1016/s0893-133x(99)00118-9.

153. Näätänen, R., et al., The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol, 2007. 118(12): p. 2544-90.

154. Kappenman, E.S., et al., The Mismatch Negativity (MMN). 2012, Oxford University Press.

155. Duncan, C.C., et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol, 2009.

120, 1883-908 DOI: 10.1016/j.clinph.2009.07.045.

156. Komatsu, M., K. Takaura, and N. Fujii Mismatch negativity in common marmosets: Whole-cortical recordings with multi-channel electrocorticograms. Scientific reports, 2015. 5, 15006 DOI: 10.1038/srep15006.

157. Parras, G.G., et al. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 2017. 8, 2148 DOI: 10.1038/s41467-017-02038-6.

158. Näätänen, R., et al., The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol, 2004. 115(1): p. 140-4.

159. Lee, M., et al. Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry, 2017. DOI: 10.1038/mp.2017.3.

160. Lee, M., et al. A tale of two sites: Differential impairment of frequency and duration mismatch negativity across a primarily inpatient versus a primarily outpatient site in schizophrenia. Schizophrenia Research, 2017.

161. Näätänen, R., et al. Mismatch negativity (MMN) deficiency: A break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 2015. 95, 338-344

161. Näätänen, R., et al. Mismatch negativity (MMN) deficiency: A break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 2015. 95, 338-344