• Aucun résultat trouvé

Free products and the Mayer-Vietoris exact sequence

Dans le document Modular Forms mod p (Page 58-62)

Let us that the group Gis the free product of two finite groups G1 and G2, for which we use the notationG=G1∗G2.

B.6.1 Proposition. The sequence

0→R[G]−→α R[G/G1]⊕R[G/G2]−→² R→0 withα(g) = (gG1,−gG2)and²(gG1,0) = 1 =²(0, gG2)is exact.

For the proof, which is completely elementary, we follow [Bieri]. LetGbe a group and M an R[G]-module. Recall that a mapd:G→M is called a derivation if

d(xy) =d(x) +xd(y)

(these are precisely the1-cochains of the standard resolution!). Denote by²the mapR[G]→Rgiven byg7→1. Then it is easy to check thatdextends to anR-linear map

d:R[G]→M, satisfyingd(ab) =d(a)²(b) +ad(b).

LetFbe a free group on generators{fi}. Since there are no relations, it is clear that the assignment suppose thatπ :F ³ Gis a free presentation of the group Gby the free groupF discussed so far.

We denoteπ(fi)bygi and extendπlinearly toπ :R[F]→R[G]. From the above, we immediately

Proof of Proposition B.6.1. Suppose thatG1 is generated by the (minimal) set{xi}andG2 by {yj}. Let F be the free group on symbols{xi, yj}so thatπ : F ³ G is given byxi 7→ xi and yi7→yi.

Clearly,²is surjective and also²◦α= 0. Next we compute exactness at the centre. The image of Equation 2.20 inR[G/G1] =R[G]/(R[G](1−h)|h∈G1)is and hence the exactness at the centre.

It remains to prove thatαis injective. Note that we have not yet used the freeness of the product;

the discussion above would remain valid if there were additional relations inG. Now we do use the freeness, namely as follows. Every element16=g∈Ghas a unique representation as products of the formg = a1b2a3b4· · ·ak−1bk, org = a1b2a3b4· · ·bk−1akwhere either all theai ∈ G1− {1}and allbj ∈G2− {1}or all theai ∈G2− {1}and allbj ∈G1− {1}. The integerkis defined to be the length ofg, denoted byl(g). We letl(1) = 0. For cosetsgG1 ∈G/G1we letl(gG1) :=l(g)wheng is represented by a product as above ending in an element ofG2. We definel(gG2)similarly.

Let λ = P

waww ∈ R[G] be an element in the kernel of α. Hence, P

wawwG1 = 0 = P

wawwG2. Let us assume that λ 6= 0. It is clear thatλcannot just be a multiple of 1 ∈ G, as otherwise it would not be in the kernel ofα. Now pick theg∈Gwithag6= 0having maximal length l(g) (among all thel(w)withaw 6= 0). It follows thatl(g) >0. Assume without loss of generality that the representation ofgends in a non-zero element of G1. Thenl(gG2) = l(g). Further, since ag 6= 0and0 = P

wawwG2, there must be anh ∈ Gwithg 6=h, gG2 =hG2 andah 6= 0. Asg does not end inG2, we must haveh=gyfor some06=y∈G2. Thus,l(h)> l(g), contradicting the

maximality and proving the proposition. 2

B.6.2 Proposition. (Mayer-Vietoris) Let M be a left R[G]-module. Then the Mayer-Vietoris se-quence gives the exact sese-quences

0→MG →MG1 ⊕MG2 →M →H1(G, M)→H1(G1, M)⊕H1(G2, M)→0.

and for alli≥2an isomorphism

Hi(G, M)∼=Hi(G1, M)⊕Hi(G2, M).

Proof. We see that all terms in the exact sequence of Proposition B.6.1 are freeR-modules. We now apply the functorHomR(·, M) to this exact sequence and obtain the exact sequence of R[G]-modules

0→M →HomR[G1](R[G], M)⊕HomR[G2](R[G], M)→HomR(R[G], M)→0.

The central terms, as well as the term on the right, can be identified with coinduced modules. Hence, the statements on cohomology follow by taking the long exact sequence of cohomology and invoking

Shapiro’s Lemma B.4.1. 2

References

[AshStevens] A. Ash and G. Stevens. Modular forms in characteristicl and special values of their L-functions, Duke Math. J. 53 (1986), no. 3, 849–868.

[Bieri] R. Bieri. Homological dimension of discrete groups. Queen Mary College Mathematics Notes, London, 1976.

[Brown] K. S. Brown. Cohomology of groups, Springer, New York, 1982.

[Cremona] J. E. Cremona. Algorithms for modular elliptic curves. Second edition. Cambridge Uni-versity Press, Cambridge, 1997.

[DDT] H. Darmon, F. Diamond, R. Taylor. Fermat’s Last Theorem.

[Deligne-Rapoport] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques, in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 143–316. Lecture Notes in Math. 349, Springer, Berlin, 1973.

[Diamond-Im] F. Diamond and J. Im. Modular forms and modular curves, in Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994), 39–133, Amer. Math. Soc., Providence, RI, 1995.

[EdixSerre] S. J. Edixhoven. Serre’s Conjecture, in Modular forms and Fermat’s last theorem (Boston, MA, 1995), 209–242, Springer, New York, 1997.

[EdixJussieu] S. J. Edixhoven. Comparison of integral structures on spaces of modular forms of weight two, and computation of spaces of forms mod2of weight one. Journal of the Inst. of Math.

Jussieu 5 (2006), no. 1, 1–34.

[EdixWeight] S. J. Edixhoven. The weight in Serre’s conjectures on modular forms, Invent. math. 109 (1992), no. 3, 563–594.

[Eisenbud] D. Eisenbud. Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.

[FJ] G. Faltings, B. W. Jordan. Crystalline Cohomology and GL2(Q), Israel J. Math. 90 (1995), no. 1–3, 1–66.

[Gross] B. H. Gross. A tameness criterion for Galois representations associated to modular forms (modp), Duke Math. J. 61 (1990), no. 2, 445–517.

[Hartshorne] R. Hartshorne. Algebraic geometry, Springer, New York, 1977.

[Herremans] A. Herremans. A combinatorial interpretation of Serre’s conjecture on modular Galois representations, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 5, 1287–1321.

[Katz] N. M. Katz.p-adic properties of modular schemes and modular forms. Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, 1973, 69–190.

[KatzDerivation] N. M. Katz. A result on modular forms in characteristic p. Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), 53–61. Lecture Notes in Math., Vol. 601, Springer, Berlin, 1977.

[KM] N. M. Katz and B. Mazur. Arithmetic moduli of elliptic curves, Ann. of Math. Stud. 108, Prince-ton Univ. Press, PrincePrince-ton, NJ, 1985.

[KW] L. J. P. Kilford, G. Wiese. On the failure of the Gorenstein property for Hecke algebras of prime weight. Preprint.

[Manin] Manin, Ju. I. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66.

[MerelUniversal] L. Merel. Universal Fourier expansions of modular forms, in On Artin’s conjecture for odd 2-dimensional representations, 59–94, Lecture Notes in Math., 1585, Springer, Berlin, 1994.

[R1] K. A. Ribet. On l-adic representations attached to modular forms II. Glasgow Math. J. 27 (1985), 185–194.

[R2] K. A. Ribet. Images of semistable Galois representations. Pacific Journal of Mathematics 181 No. 3 (1997), 277–297.

[Serre] J.-P. Serre. Sur les représentations modulaires de degré2deGal(Q/Q). Duke Mathematical Journal 54, No. 1 (1987), 179–230.

[ ˘Sokurov] V. V. ˘Sokurov. Shimura integrals of cusp forms. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 670–718, 720.

[SteinBook] W. A. Stein. Explicitly Computing Modular Forms, textbook to appear.

[Weibel] C. A. Weibel. An introduction to homological algebra, Cambridge Univ. Press, Cambridge, 1994.

[Shimura] G. Shimura. Introduction to the Arithmetic Theory of Automorphic Forms. Princeton Uni-versity Press, 1994.

[W1] G. Wiese. On the faithfulness of parabolic cohomology as a Hecke module over a finite field.

Accepted for publication in J. für die reine und angewandte Mathematik.

arXiv:math.NT/0511115.

[W2] G. Wiese. On modular symbols and the cohomology of Hecke triangle surfaces.

Preprint.arXiv:math.NT/0511113.

Gabor Wiese

NWF I - Mathematik Universität Regensburg D-93040 Regensburg Germany

E-mail:gabor@pratum.net

Webpage:http://maths.pratum.net/

Dans le document Modular Forms mod p (Page 58-62)

Documents relatifs