• Aucun résultat trouvé

B | Data-driven QCD multi-jet esti- esti-mate

B.4 Extraction of QCD multi-jet fraction

Table B.4 summarises the observed counts and fractions of the QCD models for 1–3 failed bits. The last column shows the estimated QCD multi-jet fractions. Table B.5 shows the

fraction of real electron events picked up in the model building, estimated by applying the anti-electron method to simulated samples. The QCD multi-jet fractions corrected for this contribution is also shown. The real electron estimates are not affected by trigger prescales, but the per-process normalisation derived in the fit still needs to be applied.

Each model and each jet bin leads to a different prediction of the QCD fraction, but the correction brings the estimates of the different QCD models closer to each other.

The uncertainties in the table are based on the statistical uncertainties of the yields and the uncertainty of the fitted QCD normalisation. They are clearly optimistic in many cases. The nominal analysis requires four or more jets, and optionally one or moreb-tags.

Averaging over the three estimates available per jet bin, and increasing the uncertainty to also cover most of the estimated fractions of neighbouring jet bins, the following anti-electron QCD fractions are found:

• ě4 jets, nob-tag requirement: p7˘2q%

• ě4 jets, andb-tag requirement: p3.1˘1.4q%

For comparison we quote the results of thematrix method (MM; see e.g. [190], chapter 10.3), commonly used for QCD multi-jet estimates. At the time of the Moriond conference 2011, the following estimates were found for the electron channel of the semi-leptonictt¯ analysis using the MM:

• ě4 jets, nob-tag requirement: p5.5˘2.0q%

• ě4 jets, andb-tag requirement: p5.4˘5.9q%

The results are compatible. The anti-electron estimates have smaller uncertainties, and the effect of the b-tag requirement is more visible there.

jet bin data 2011

QCD model uncorrected

QCD fraction bits raw hPSi fit norm. weighted

ě1j, 0b 1669412 ě1 29489 110.0 0.0409˘0.0001 132590 7.94%˘ 0.05%

ě1j, 0b 1669412 ě2 14343 109.5 0.0882˘0.0003 138531 8.30%˘ 0.07%

ě1j, 0b 1669412 ě3 3792 108.1 0.3414˘0.0010 139908 8.38%˘ 0.14%

ě1j, 1b 121012 ě1 2441 92.8 0.0470˘0.0005 10652 8.80%˘ 0.20%

ě1j, 1b 121012 ě2 1147 94.8 0.1025˘0.0011 11151 9.21%˘ 0.29%

ě1j, 1b 121012 ě3 295 89.4 0.3982˘0.0041 10504 8.68%˘ 0.51%

ě2j, 0b 430108 ě1 14934 85.7 0.0333˘0.0002 42581 9.90%˘ 0.11%

ě2j, 0b 430108 ě2 7435 85.4 0.0725˘0.0005 46038 10.70%˘ 0.14%

ě2j, 0b 430108 ě3 1979 83.4 0.2753˘0.0019 45435 10.56%˘ 0.25%

ě2j, 1b 73931 ě1 1846 78.9 0.0417˘0.0008 6075 8.22%˘ 0.24%

ě2j, 1b 73931 ě2 846 79.3 0.0906˘0.0016 6079 8.22%˘ 0.32%

ě2j, 1b 73931 ě3 219 74.2 0.3201˘0.0058 5202 7.04%˘ 0.49%

ě2j, 2b 18502 ě1 232 67.2 0.0375˘0.0033 585 3.16%˘ 0.35%

ě2j, 2b 18502 ě2 90 61.3 0.0712˘0.0063 393 2.12%˘ 0.29%

ě2j, 2b 18502 ě3 25 73.9 0.3686˘0.0347 682 3.68%˘ 0.81%

ě3j, 0b 122577 ě1 6341 67.5 0.0247˘0.0004 10565 8.62%˘ 0.19%

ě3j, 0b 122577 ě2 3122 65.8 0.0535˘0.0009 10997 8.97%˘ 0.22%

ě3j, 0b 122577 ě3 806 65.9 0.1909˘0.0033 10141 8.27%˘ 0.33%

ě3j, 1b 42208 ě1 1027 64.5 0.0351˘0.0014 2324 5.50%˘ 0.27%

ě3j, 1b 42208 ě2 458 61.5 0.0793˘0.0031 2233 5.29%˘ 0.32%

ě3j, 1b 42208 ě3 117 61.8 0.2660˘0.0103 1925 4.56%˘ 0.46%

ě3j, 2b 15533 ě1 183 64.0 0.0334˘0.0050 392 2.52%˘ 0.42%

ě3j, 2b 15533 ě2 67 54.0 0.0741˘0.0105 269 1.73%˘ 0.32%

ě3j, 2b 15533 ě3 14 61.1 0.3059˘0.0475 262 1.69%˘ 0.52%

ě4j, 0b 40021 ě1 1885 66.5 0.0217˘0.0009 2724 6.81%˘ 0.33%

ě4j, 0b 40021 ě2 942 64.7 0.0478˘0.0021 2912 7.28%˘ 0.39%

ě4j, 0b 40021 ě3 229 72.7 0.1609˘0.0070 2679 6.69%˘ 0.53%

ě4j, 1b 21299 ě1 405 64.1 0.0303˘0.0028 787 3.69%˘ 0.38%

ě4j, 1b 21299 ě2 181 63.2 0.0647˘0.0060 740 3.47%˘ 0.41%

ě4j, 1b 21299 ě3 47 69.2 0.1874˘0.0176 610 2.86%˘ 0.50%

ě4j, 2b 9661 ě1 100 65.3 0.0322˘0.0081 211 2.17%˘ 0.59%

ě4j, 2b 9661 ě2 39 57.0 0.0559˘0.0157 125 1.28%˘ 0.42%

ě4j, 2b 9661 ě3 7 56.7 0.1294˘0.0657 52 0.53%˘ 0.34%

ě5j, 0b 12753 ě1 490 65.3 0.0258˘0.0023 826 6.48%˘ 0.66%

ě5j, 0b 12753 ě2 240 59.3 0.0563˘0.0051 802 6.28%˘ 0.71%

ě5j, 0b 12753 ě3 61 73.1 0.1310˘0.0126 585 4.58%˘ 0.73%

ě5j, 1b 8372 ě1 127 61.3 0.0301˘0.0053 235 2.80%˘ 0.55%

ě5j, 1b 8372 ě2 52 49.7 0.0619˘0.0111 160 1.91%˘ 0.43%

ě5j, 1b 8372 ě3 12 42.5 0.0857˘0.0223 44 0.52%˘ 0.20%

ě5j, 2b 4236 ě1 36 56.4 0.0262˘0.0216 54 1.25%˘ 1.06%

ě5j, 2b 4236 ě2 15 29.7 0.0960˘0.0774 43 1.01%˘ 0.85%

ě5j, 2b 4236 ě3 3 41.6 0.0941˘0.2427 12 0.28%˘ 0.73%

Table B.4: Observed events in 2011 data using the nominal selection, QCD yields and applied scales, and the QCD fraction without the correction for the real electron contri-bution.

jet bin data 2011

QCD model real electrons corrected QCD fraction bits weighted raw weighted

ě1j, 0b 1669412 ě1 132590 409825 10417.2˘31.9 7.32%˘ 0.06%

ě1j, 0b 1669412 ě2 138531 76079 4021.4˘20.8 8.06%˘ 0.08%

ě1j, 0b 1669412 ě3 139908 8363 1352.2˘19.5 8.30%˘ 0.14%

ě1j, 1b 121012 ě1 10652 109390 842.0˘ 6.7 8.11%˘ 0.21%

ě1j, 1b 121012 ě2 11151 19384 340.2˘ 5.2 8.93%˘ 0.29%

ě1j, 1b 121012 ě3 10504 2534 148.2˘ 5.4 8.56%˘ 0.51%

ě2j, 0b 430108 ě1 42581 230791 2214.6˘12.2 9.39%˘ 0.11%

ě2j, 0b 430108 ě2 46038 43832 956.0˘ 7.6 10.48%˘ 0.15%

ě2j, 0b 430108 ě3 45435 5125 343.8˘ 6.5 10.48%˘ 0.25%

ě2j, 1b 73931 ě1 6075 92883 477.6˘ 5.5 7.57%˘ 0.25%

ě2j, 1b 73931 ě2 6079 16753 198.5˘ 3.3 7.95%˘ 0.32%

ě2j, 1b 73931 ě3 5202 2237 79.0˘ 2.3 6.93%˘ 0.49%

ě2j, 2b 18502 ě1 585 32499 99.7˘ 6.8 2.62%˘ 0.38%

ě2j, 2b 18502 ě2 393 5745 33.2˘ 2.3 1.94%˘ 0.30%

ě2j, 2b 18502 ě3 682 824 24.8˘ 2.1 3.55%˘ 0.82%

ě3j, 0b 122577 ě1 10565 104179 492.6˘ 5.2 8.22%˘ 0.19%

ě3j, 0b 122577 ě2 10997 19932 208.5˘ 2.9 8.80%˘ 0.23%

ě3j, 0b 122577 ě3 10141 2636 87.1˘ 2.6 8.20%˘ 0.33%

ě3j, 1b 42208 ě1 2324 64308 227.0˘ 6.6 4.97%˘ 0.29%

ě3j, 1b 42208 ě2 2233 11868 93.6˘ 2.9 5.07%˘ 0.32%

ě3j, 1b 42208 ě3 1925 1680 42.7˘ 1.8 4.46%˘ 0.46%

ě3j, 2b 15533 ě1 392 27352 75.4˘ 9.6 2.04%˘ 0.45%

ě3j, 2b 15533 ě2 269 4884 29.7˘ 3.7 1.54%˘ 0.33%

ě3j, 2b 15533 ě3 262 723 18.3˘ 2.7 1.57%˘ 0.52%

ě4j, 0b 40021 ě1 2724 50321 138.5˘ 3.7 6.46%˘ 0.34%

ě4j, 0b 40021 ě2 2912 9687 57.2˘ 1.7 7.13%˘ 0.39%

ě4j, 0b 40021 ě3 2679 1420 25.7˘ 1.2 6.63%˘ 0.53%

ě4j, 1b 21299 ě1 787 38434 98.9˘ 7.5 3.23%˘ 0.41%

ě4j, 1b 21299 ě2 740 7251 38.5˘ 3.1 3.29%˘ 0.42%

ě4j, 1b 21299 ě3 610 1107 16.7˘ 1.5 2.79%˘ 0.50%

ě4j, 2b 9661 ě1 211 18626 45.4˘10.4 1.70%˘ 0.63%

ě4j, 2b 9661 ě2 125 3464 14.7˘ 3.8 1.13%˘ 0.42%

ě4j, 2b 9661 ě3 52 542 5.4˘ 2.6 0.48%˘ 0.34%

ě5j, 0b 12753 ě1 826 22098 52.6˘ 3.6 6.06%˘ 0.67%

ě5j, 0b 12753 ě2 802 4296 22.0˘ 1.6 6.11%˘ 0.71%

ě5j, 0b 12753 ě3 585 673 7.5˘ 0.7 4.52%˘ 0.73%

ě5j, 1b 8372 ě1 235 18491 38.7˘ 6.0 2.34%˘ 0.58%

ě5j, 1b 8372 ě2 160 3551 15.1˘ 2.4 1.73%˘ 0.44%

ě5j, 1b 8372 ě3 44 576 3.3˘ 0.8 0.48%˘ 0.20%

ě5j, 2b 4236 ě1 54 9789 16.6˘12.8 0.86%˘ 1.11%

ě5j, 2b 4236 ě2 43 1847 11.6˘ 8.7 0.74%˘ 0.89%

ě5j, 2b 4236 ě3 12 311 2.0˘ 4.8 0.23%˘ 0.74%

Table B.5: Estimates of the real electron fraction in the QCD models, and corrected QCD fractions per jet bin and model.

Bibliography

[1] M. Breidenbach et al.Observed Behavior of Highly Inelastic Electron-Proton Scat-tering Phys. Rev. Lett. 23(16) (1969) 935.doi:10.1103/PhysRevLett.23.935.

[2] J. Beringer et al.Particle Data Group Phys. Rev. D86, 010001. 2012.

[3] V. Ezhela, S. Lugovsky, and O. Zenin.Hadronic part of the muon g´2estimated on the σ2003tot pe`e´ Ñ hadronsq evaluated data compilation (2003). arXiv: hep -ph/0312114 [hep-ph].

[4] C. Cowan et al.Detection of the free neutrino: A Confirmation Science 124 (1956) 103.doi:10.1126/science.124.3212.103.

[5] F. Reines and C. L. Cowan.The neutrino Nature 178 (1956) 446.doi:10.1038/

178446a0.

[6] K. Nakamura. Physics of Neutrinos J. Phys. Soc. Japan 76(11) (2007) 111008.

doi:10.1143/JPSJ.76.111008.

[7] S. Schael et al. Precision electroweak measurements on the Z resonance Phys.

Rept. 427 (2006) 257.doi:10.1016/j.physrep.2005.12.006.

[8] ATLAS Collaboration.Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at ?

s “ 7TeV with the ATLAS detector Phys. Lett. B 718 (2012) 1284. doi:10.1016/j.

physletb.2012.11.071.

[9] ATLAS Collaboration.Measurement of the Higgs boson mass from the H Ñ γγ and H Ñ ZZ˚ Ñ 4` channels with the ATLAS detector using 25 fb´1 of pp collision data Phys. Rev. D 90(5) (2014) 052004. doi: 10.1103/PhysRevD.90.

052004.

[10] CMS Collaboration. Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model. CMS-PAS-HIG-14-009. 2014.

[11] D. Griffiths. Introduction to Elementary Particles, Second Edition Wiley-VCH, 2008.

[12] W. N. Cottingham and D. A. Greenwood.An Introduction to the Standard Model of Particle Physics 2nd ed. Cambridge Univ. Press, 2007. url: http : / / www . einstein-schrodinger.com/Standard_Model.pdf.

[13] F. Englert and R. Brout.Broken Symmetry and the Mass of Gauge Vector Mesons Phys. Rev. Lett. 13(9) (1964) 321.doi:10.1103/PhysRevLett.13.321.

[14] P. W. Higgs. Broken Symmetries and the Masses of Gauge Bosons Phys. Rev.

Lett. 13(16) (1964) 508. doi:10.1103/PhysRevLett.13.508.

[15] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws and Massless Particles Phys. Rev. Lett. 13(20) (1964) 585. doi: 10 . 1103 / PhysRevLett.13.585.

[16] J. Goldstone.Field theories with "Superconductor" solutionsNuovo Cimento 19(1) (1961) 154.doi:10.1007/BF02812722.

[17] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory Addison-Wesley, 1995.

[18] F. J. Hasert et al. Observation of Neutrino Like Interactions Without Muon Or Electron in the Gargamelle Neutrino Experiment Phys. Lett. B 46 (1973) 138.

doi:10.1016/0370-2693(73)90499-1.

[19] G. Arnison et al. Experimental observation of isolated large transverse energy electrons with associated missing energy at ?

s“540 GeV Phys. Lett. B 122(1) (1983) 103.doi:10.1016/0370-2693(83)91177-2.

[20] M. Banner et al.Observation of single isolated electrons of high transverse momen-tum in events with missing transverse energy at the CERN pp collider Phys. Lett.

B 122(5-6) (1983) 476.doi:10.1016/0370-2693(83)91605-2.

[21] G. Arnison et al. Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider Phys. Lett. B 126(5) (1983) 398.

doi:10.1016/0370-2693(83)90188-0.

[22] P. Bagnaia et al. Evidence for Z0 Ñ e`e´ at the CERN pp collider Phys. Lett.

B 129(1-2) (1983) 130.doi:10.1016/0370-2693(83)90744-X.

[23] ATLAS Collaboration. A particle consistent with the Higgs Boson observed with the ATLAS Detector at the Large Hadron Collider Science 338 (2012) 1576.doi: 10.1126/science.1232005.

[24] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC Phys. Lett. B 716 (2012) 30. arXiv:1207.7235.

[25] ATLAS Collaboration. Evidence for the spin-0 nature of the Higgs boson using ATLAS data Phys. Lett. B 726 (2013) 120. arXiv:1307.1432.

[26] CMS Collaboration.Study of the Mass and Spin-Parity of the Higgs Boson Can-didate via Its Decays to Z Boson Pairs. On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairsPhys. Rev. Lett. 110 (2012) 081803.

arXiv: 1212.6639.

[27] ATLAS Collaboration.Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC Phys. Lett. B 716 (2012) 1.doi:10.1016/j.physletb.2012.08.020.

[28] S. Dittmaier et al. Handbook of LHC Higgs Cross Sections: 2. Differential Distri-butions (2012). doi:10.5170/CERN-2012-002.

[29] F. Zwicky.On the Masses of Nebulae and of Clusters of Nebulae Astrophys. J. 86 (1937) 217.doi:10.1086/143864.

[30] R. N. Cahn. The eighteen arbitrary parameters of the standard model in your everyday life Rev. Mod. Phys. 68(3) (1996) 951.doi:10.1103/RevModPhys.68.

951.

[31] S. P. Martin. A Supersymmetry primer Adv. Ser. Direct. High Energy Phys. 21 (2010) 1.doi:10.1142/9789814307505_0001.

[32] H. W. Baer and X. Tata.Weak scale supersymmetry: from superfields to scattering events Cambridge Univ. Press, 2006.

[33] M. Drees, R. Godbole, and P. Roy.Theory and phenomenology of Sparticles: an account of four-dimensional N=1 supersymmetry in high-energy physics World Scientific, 2004.

[34] U. Amaldi, W. de Boer, and H. Fürstenau.Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP Phys. Lett. B 260 (1991) 447.

[35] CMS Collaboration. Search for leptonic decays of W1 bosons in pp collisions at

?s“7TeV J. High Energy Phys. 1208 (2012) 023.doi:10.1007/JHEP08(2012) 023.

[36] ATLAS Collaboration. ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at ?

s “ 7 TeV Eur. Phys. J.

C 72 (2012) 2241.doi:10.1140/epjc/s10052-012-2241-5.

[37] CMS Collaboration. Search for narrow resonances in dilepton mass spectra in pp collisions at ?

s “ 7 TeV Phys. Lett. B 714 (2012) 158. doi: 10 . 1016 / j . physletb.2012.06.051.

[38] ATLAS Collaboration.Search for high-mass resonances decaying to dilepton final states in pp collisions at ?

s“ 7 TeV with the ATLAS detector J. High Energy Phys. 1211 (2012) 138.doi:10.1007/JHEP11(2012)138.

[39] S. Dodelson and L. M. Widrow.Sterile-neutrinos as dark matter Phys. Rev. Lett.

72 (1994) 17.doi:10.1103/PhysRevLett.72.17.

[40] E. Bulbul et al.Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters Astrophys. J. 789 (2014) 13. doi: 10.1088/0004-637X/789/1/13.

[41] A. Boyarsky et al.An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster (2014). arXiv: 1402.4119 [astro-ph.CO].

[42] L. Susskind.Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory Phys. Rev. D 20(10) (1979) 2619.doi:10.1103/PhysRevD.20.2619.

[43] L. Randall and R. Sundrum.Large Mass Hierarchy from a Small Extra Dimension Phys. Rev. Lett. 83(17) (1999) 3370.doi:10.1103/PhysRevLett.83.3370.

[44] H. P. Nilles. Supersymmetry, Supergravity and Particle Physics Phys. Rept. 110 (1984) 1.doi:10.1016/0370-1573(84)90008-5.

[45] I. Aitchison. Supersymmetry in Particle Physics: An Elementary Introduction Cambridge Univ. Press, 2007.

[46] M. E. Peskin. Supersymmetry in Elementary Particle Physics (2008) 609. arXiv:

0801.1928 [hep-ph].

[47] J. Wess and B. Zumino.A Lagrangian Model Invariant Under Supergauge Trans-formations Phys. Lett. B 49 (1974) 52.doi:10.1016/0370-2693(74)90578-4.

[48] S. R. Coleman and J. Mandula. All Possible Symmetries of the S Matrix Phys. Rev. 159 (1967) 1251.doi:10.1103/PhysRev.159.1251.

[49] R. Haag, J. T. Lopuszanski, and M. Sohnius. All Possible Generators of Super-symmetries of the S-Matrix Nucl. Phys. B 88 (1975) 257.

[50] P. Binétruy. Supersymmetry: Theory, Experiment, and Cosmology Oxford Grad-uate Texts. Oxford Univ. Press, 2006.

[51] S. Ferrara, L. Girardello, and F. Palumbo. A General Mass Formula in Broken Supersymmetry Phys. Rev. D 20 (1979) 403. doi:10.1103/PhysRevD.20.403.

[52] G. R. Farrar and S. Weinberg. Supersymmetry at Ordinary Energies. 2. R In-variance, Goldstone Bosons, and Gauge Fermion Masses Phys. Rev. D 27 (1983) 2732.doi:10.1103/PhysRevD.27.2732.

[53] D. J. Gross, R. W. Jackiw, and S. B. Treiman. Lectures on Current Algebra and its Applications.Princeton Univ. Press, 1972.

[54] S. Dimopoulos and L. J. Hall. Lepton and Baryon Number Violating Collider Signatures from Supersymmetry Phys. Lett. B 207 (1988) 210. doi: 10 . 1016 / 0370-2693(88)91418-9.

[55] D. Chung et al. The Soft supersymmetry breaking Lagrangian: Theory and appli-cations Phys. Rept. 407 (2005) 1. doi:10.1016/j.physrep.2004.08.032. [56] R. Mahbubani et al. Light Nondegenerate Squarks at the LHC Phys. Rev. Lett.

110 15 (2013) 151804. doi: 10 . 1103 / PhysRevLett . 110 . 151804. url: http : //link.aps.org/doi/10.1103/PhysRevLett.110.151804.

[57] R. Barbieri and G. F. Giudice. Upper bounds on supersymmetric particle masses Nucl. Phys. B 306 (1987) 63.

[58] M. Papucci, J. T. Ruderman, and A. Weiler. Natural SUSY Endures J. High Energy Phys. 1209 (2012) 035.doi:10.1007/JHEP09(2012)035.

[59] A. Djouadi, J.-L. Kneur, and G. Moultaka.SuSpect: A Fortran code for the super-symmetric and Higgs particle spectrum in the MSSM Comput. Phys. Commun.

176 (2007) 426. doi:10.1016/j.cpc.2006.11.009.

[60] C. F. Berger et al. Supersymmetry Without Prejudice J. High Energy Phys. 0902 (2009) 023.doi:10.1088/1126-6708/2009/02/023.

[61] G. D’Ambrosio et al.Minimal flavor violation: An Effective field theory approach Nucl. Phys. B 645 (2002) 155.doi:10.1016/S0550-3213(02)00836-2.

[62] M. Perelstein and A. Weiler.Polarized Tops from Stop Decays at the LHC J. High Energy Phys. 0903 (2009) 141.doi:10.1088/1126-6708/2009/03/141.

[63] H. E. Haber and R. Hempfling. Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mpZq? Phys. Rev. Lett. 66 (1991) 1815.doi:10.1103/PhysRevLett.66.1815.

[64] M. Yamaguchi.Prospects of Physics Beyond the Standard Model: Supersymmetry J. Phys. Soc. Japan 76(11) (2007) 111012.doi:10.1143/JPSJ.76.111012.

[65] M. S. Carena and H. E. Haber.Higgs boson theory and phenomenologyProg. Part.

Nucl. Phys. 50 (2003) 63.doi:10.1016/S0146-6410(02)00177-1.

[66] H. Baer et al.Radiative natural SUSY with a 125 GeV Higgs boson Phys. Rev.

Lett. 109 (2012) 161802.doi:10.1103/PhysRevLett.109.161802.

[67] A. Arbey et al. Implications of a 125 GeV Higgs for supersymmetric models Phys. Lett. B 708 (2012) 162.doi:10.1016/j.physletb.2012.01.053.

[68] N. Zhou et al. Bounds on Invisible Higgs boson Decays from t¯tH Production (2014). arXiv:1408.0011 [hep-ph].

[69] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL experiments. Notes LEPSUSYWG/01-03.1 and 02-04.1 url: http : / / lepsusy . web . cern . ch / lepsusy.

[70] M. Jaffre.SUSY searches at the TevatronEur. Phys. J.Web Conf. 28 (2012) 09006.

doi:10.1051/epjconf/20122809006.

[71] OPAL Collaboration. Search for a scalar top quark using the OPAL detector Phys. Lett. B 337 (1994) 207.doi:10.1016/0370-2693(94)91470-2.

[72] D0 Collaboration.Search for Light Top Squarks inppCollisions at ?

s“1.8TeV Phys. Rev. Lett. 76(13) (1996) 2222.doi:10.1103/PhysRevLett.76.2222.

[73] OPAL Collaboration. Search for scalar top and scalar bottom quarks at LEP Phys. Lett. B 545 (2002) 272.doi:10.1016/S0370-2693(02)02593-5.

[74] CDF Collaboration.Note 9834, Search for scalar top decaying into c`χ˜0 in the MET+jets sample. 2009.

[75] CDF Collaboration.Note 8701, Search for charged, massive stable particles. 2007.

[76] D0 Collaboration. Search for pair production of the scalar top quark in the elec-tron+muon final state Phys. Lett. B 696 (2011) 321.doi:10.1016/j.physletb.

2010.12.052.

[77] L. Evans and P. Bryant.LHC MachineJ. Instrum. 3(08) (2008) 08001.url:http:

//stacks.iop.org/1748-0221/3/i=08/a=S08001.

[78] ATLAS Collaboration. Public Website. 2014. url: https : / / twiki . cern . ch / twiki/bin/view/AtlasPublic/StandardModelPublicResults.

[79] LHCb Collaboration. Implications of LHCb measurements and future prospects Eur. Phys. J. C 73(4), 2373 (2013) 1.doi:10.1140/epjc/s10052-013-2373-2.

[80] LHCb Collaboration.Observation of the B0s Ñ J{ψKs0K˘π¯ decay J. High En-ergy Phys. 1407 (2014) 140.doi:10.1007/JHEP07(2014)140.

[81] LHCb Collaboration. Observation of two new Ξ´b baryon resonances Phys. Rev.

Lett. 114(6) (2014) 062004.doi:10.1103/PhysRevLett.114.062004.

[82] ALICE Collaboration.Suppression of Charged Particle Production at Large Trans-verse Momentum in Central Pb–Pb Collisions at ?

sN N “2.76 TeV Phys. Lett.

B 696 (2011) 30. doi:10.1016/j.physletb.2010.12.020.

[83] ATLAS Collaboration. Public Website. url: https://twiki.cern.ch/twiki/

bin/view/AtlasPublic/LuminosityPublicResults.

[84] ATLAS Collaboration.The ATLAS Experiment at the CERN Large Hadron Col-lider J. Instrum. 3(08) (2008) 08003. url: http : / / stacks . iop . org / 1748 -0221/3/i=08/a=S08003.

[85] ATLAS Collaboration.Luminosity determination in pp collisions at ?

s“7 TeV using the ATLAS detector at the LHC Eur. Phys. J. C 71(4), 1630 (2011) 1.doi: 10.1140/epjc/s10052-011-1630-5.

[86] ATLAS Collaboration. Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung. ATLAS-CONF-2012-047.

[87] ATLAS Collaboration.Performance of the ATLAS Inner Detector Track and Ver-tex Reconstruction in the High Pile-Up LHC Environment. ATLAS-CONF-2012-042.

[88] ATLAS Collaboration. Electron reconstruction and identification efficiency mea-surements with the ATLAS detector using the 2011 LHC proton-proton collision data Eur. Phys. J. C 74(7) (2014) 2941.doi:10.1140/epjc/s10052-014-2941-0.

[89] ATLAS Collaboration.Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data. ATLAS-CONF-2014-032.

[90] ATLAS Collaboration. Alignment of the ATLAS Inner Detector and its Perfor-mance in 2012. ATLAS-CONF-2014-047.

[91] ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data Eur. Phys. J. C 74(10) (2014) 3071. doi: 10 . 1140/epjc/s10052-014-3071-4.

[92] ATLAS Collaboration. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data.

CERN-PH-EP-2014-151. arXiv: 1407.3935.

[93] ATLAS Collaboration. Jet energy measurement with the ATLAS detector in proton-proton collisions at ?

s “ 7 TeV Eur. Phys. J. C 73(3), 2304 (2013) 1.

doi:10.1140/epjc/s10052-013-2304-2.

[94] M. Cacciari, G. P. Salam, and G. Soyez. The Anti-k(t) jet clustering algorithm J. High Energy Phys. 0804 (2008) 063.doi:10.1088/1126-6708/2008/04/063.

[95] ATLAS Collaboration.Jet energy measurement and its systematic uncertainty in proton-proton collisions at ?

s“7 TeV with the ATLAS detector (2014). arXiv:

1406.0076 [hep-ex].

[96] ATLAS Collaboration. Characterisation and mitigation of beam-induced back-grounds observed in the ATLAS detector during the 2011 proton-proton run J. In-strum. 8(07) (2013) 07004.

[97] ATLAS Collaboration. Public Website. url: https://twiki.cern.ch/twiki/

bin/view/AtlasPublic/JetEtmissApproved2013JESUncertainty.

[98] ATLAS Collaboration. Public Website. url: https://twiki.cern.ch/twiki/

bin/view/AtlasPublic/JetEtmissApproved2013Jer2011.

[99] ATLAS Collaboration.Jet energy resolution in proton-proton collisions at ? s“ 7TeV recorded in 2010 with the ATLAS detector Eur. Phys. J. C 73 (2013) 2306.

doi:10.1140/epjc/s10052-013-2306-0.

[100] ATLAS Collaboration.Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data. ATLAS-CONF-2011-102.

[101] ATLAS Collaboration.Calibration of the performance of b-tagging forcand light-flavour jets in the 2012 ATLAS data. ATLAS-CONF-2014-046.

[102] ATLAS Collaboration. Performance of Missing Transverse Momentum Recon-struction in ATLAS studied in Proton-Proton Collisions recorded in 2012 at 8 TeV. ATLAS-CONF-2013-082.

[103] ATLAS Collaboration. Performance of the ATLAS Trigger System in 2010 Eur.

Phys. J. C 72 (2011) 1849. arXiv:1110.1530.

[104] ATLAS Collaboration.Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC New J. Phys. 13(5) (2011) 053033. doi: 10.1088/1367-2630/13/5/053033.

[105] H.-L. Lai et al. New parton distributions for collider physics Phys. Rev. D 82 (2010) 074024.doi:10.1103/PhysRevD.82.074024.

[106] J. Pumplin et al. New generation of parton distributions with uncertainties from global QCD analysis J. High Energy Phys. 0207 (2002) 012.doi: 10.1088/1126-6708/2002/07/012.

[107] V. D. Barger and R. Phillips.Collider physics; 2nd ed.Frontiers in Physics. West-view Press, 1997.

[108] M. L. Mangano et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions J. High Energy Phys. 0307 (2003) 001. doi: 10.1088/1126-6708/2003/07/001.

[109] T. Gleisberg et al.Event generation with SHERPA 1.1 J. High Energy Phys. 0902 (2009) 007.doi:10.1088/1126-6708/2009/02/007.

[110] M. L. Mangano.QCD and the physics of hadronic collisionsPhysics-Uspekhi 53(2) (2010) 109.url:http://stacks.iop.org/1063-7869/53/i=2/a=R01.

[111] B. R. Webber.Fragmentation and Hadronization (2000).

[112] J. Alwall et al.Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions Eur. Phys. J. C 53 (2008) 473.

doi:10.1140/epjc/s10052-007-0490-5.

[113] ATLAS Collaboration. Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector Eur. Phys. J. C 74(8), 2965 (2014).doi:10.1140/epjc/s10052-014-2965-5.

[114] S. Agostinelli et al. Geant4–a simulation toolkit NIM A 506(3) (2003) 250. doi: 10.1016/S0168-9002(03)01368-8.

[115] Z. Marshall.Simulation of Pile-up in the ATLAS Experiment. ATL-SOFT-PROC-2013-030.

[116] J. Boudreau and V. Tsulaia.The GeoModel toolkit for detector description. 2005.

url:http://doc.cern.ch/yellowrep/2005/2005-002/p353.pdf.

[117] ATLAS Collaboration.Performance of the Fast ATLAS Tracking Simulation (FA-TRAS) and the ATLAS Fast Calorimeter Simulation (FastCaloSim) with single particles. ATL-SOFT-PUB-2014-001.

[118] ATLAS Collaboration. Measurement of the tt production cross-section using eµ events with b -tagged jets in pp collisions at ?

s“7 and 8 TeV with the ATLAS detector Eur. Phys. J. C 74(10) (2014) 3109.doi: 10.1140/epjc/s10052- 014-3109-7.

[119] ATLAS Collaboration. Measurement of Spin Correlation in Top-Antitop Quark Events and Search for Top Squark Pair Production in pp Collisions at ?

s “ 8TeV Using the ATLAS Detector Phys. Rev. Lett. 114 14 (2015).doi:10.1103/

PhysRevLett.114.142001.

[120] B. Altunkaynak et al. Studying Gaugino Mass Unification at the LHC J. High Energy Phys. 04 (2009) 114.doi:10.1088/1126-6708/2009/04/114.

[121] ATLAS Collaboration. Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in ?

s “ 8 TeV pp collisions with the ATLAS detector J. High Energy Phys. 11 (2014) 118. doi: 10.1007/JHEP11(2014)118.

[122] ATLAS Collaboration.Measurement of the production cross section for W-bosons in association with jets in pp collisions using 33 pb-1 at ?

s “ 7 TeV with the ATLAS detector. ATLAS-CONF-2011-060.

[123] ATLAS Collaboration. Study of jets produced in association with a W boson in pp collisions at ?

s “ 7 TeV with the ATLAS detector Phys. Rev. D 85 (2012) 092002. doi:10.1103/PhysRevD.85.092002.

[124] ATLAS Collaboration. Top Quark Pair Production Cross-section Measurements in ATLAS in the Single Lepton+Jets Channel without b-tagging. ATLAS-CONF-2011-023.

[125] ATLAS Collaboration.A combined measurement of the top quark pair production cross-section using dilepton and single-lepton final states. ATLAS-CONF-2011-040.

[126] ATLAS Collaboration. Measurement of thet¯t production cross section in the all-hadronic channel in ATLAS with ?

s“7 TeV data. ATLAS-CONF-2012-031.

[127] ATLAS Collaboration.Measurement of thett production cross-section as a func-tion of jet multiplicity and jet transverse momentum in 7 TeV proton-proton col-lisions with the ATLAS detector J. High Energy Phys. 1501 (2015) 020. doi: 10.1007/JHEP01(2015)020.

[128] ATLAS Collaboration.Measurements of normalized differential cross sections for tt¯production in pp collisions at?

s“7TeV using the ATLAS detectorPhys. Rev.

D 90(7) (2014) 072004.doi:10.1103/PhysRevD.90.072004.

[129] ATLAS Collaboration. Measurement of the top quark mass with the template method in the t¯t -> lepton + jets channel using ATLAS data Eur. Phys. J. C 72 (2012) 2046.doi:10.1140/epjc/s10052-012-2046-6.

[130] ATLAS, CDF, CMS, and D0 Collaborations.First combination of Tevatron and LHC measurements of the top-quark mass (2014). arXiv: 1403.4427 [hep-ex].

[131] ATLAS Collaboration.Measurement of the W W `W Z cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum, and two jets with the ATLAS detector at ?

s “ 7 TeV J. High Energy Phys. 01 (2014) 049. arXiv:1410.7238.

[132] ATLAS Collaboration.Comprehensive measurements oft-channel single top-quark production cross sections at?

s“7 TeV with the ATLAS detector Phys. Rev. D 90 (2014) 112006. arXiv:1406.7844.

[133] ATLAS Collaboration.Measurement of the production cross section for Z{γ˚ in association with jets in pp collisions at ?

s “ 7 TeV with the ATLAS Detector.

ATLAS-CONF-2011-042.

[134] ATLAS Collaboration. Evidence for the associated production of a vector boson (W, Z) and top quark pair in the dilepton and trilepton channels in pp collision data at?

s“8TeV collected by the ATLAS detector at the LHC. ATLAS-CONF-2014-038.

[135] ATLAS Collaboration. Search for t¯tZ production in the three lepton final state with 4.7 fb´1 of ?

s “7 TeV pp collision data collected by the ATLAS detector.

ATLAS-CONF-2012-126.

[136] CMS Collaboration.Measurement of the Associated Production of Vector Bosons with Top-Antitop Pairs at 7 TeV. CMS-PAS-TOP-12-014. 2012.

[137] S. Dittmaier et al.Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (2011).doi:10.5170/CERN-2011-002.

[138] M. Bahr et al. Herwig++ Physics and Manual Eur. Phys. J. C 58 (2008) 639.

doi:10.1140/epjc/s10052-008-0798-9.

[139] J. Alwall et al. MadGraph 5 : Going Beyond J. High Energy Phys. 1106 (2011) 128.doi:10.1007/JHEP06(2011)128.

[140] S. Frixione, P. Nason, and C. Oleari. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method J. High Energy Phys. 0711 (2007) 070.doi:10.1088/1126-6708/2007/11/070.

[141] B. P. Kersevan and E. Richter-Was. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1 Comput. Phys. Commun. 184 (2013) 919.doi:10.1016/j.cpc.2012.10.032.

[142] New ATLAS event generator tunes to 2010 data. ATL-PHYS-PUB-2011-008.

[143] P. Z. Skands.Tuning Monte Carlo Generators: The Perugia Tunes Phys. Rev. D 82 (2010) 074018.doi:10.1103/PhysRevD.82.074018.

[144] S. Gieseke, C. Rohr, and A. Siodmok. Colour reconnections in Herwig++ Eur.

Phys. J. C 72 (2012) 2225. doi:10.1140/epjc/s10052-012-2225-5.

[145] T. Sjostrand, S. Mrenna, and P. Z. Skands. PYTHIA 6.4 Physics and Manual J. High Energy Phys. 0605 (2006) 026.doi:10.1088/1126-6708/2006/05/026.

[146] T. Sjostrand, S. Mrenna, and P. Z. Skands.A Brief Introduction to PYTHIA 8.1 Comput. Phys. Commun. 178 (2008) 852. doi:10.1016/j.cpc.2008.01.036.

[147] M. L. Mangano et al. Matching matrix elements and shower evolution for top-quark production in hadronic collisions J. High Energy Phys. 0701 (2007) 013.

doi:10.1088/1126-6708/2007/01/013.

[148] S. Catani et al. QCD matrix elements + parton showers J. High Energy Phys.

0111 (2001) 063.doi:10.1088/1126-6708/2001/11/063.

[149] ATLAS Collaboration.Performance of the ATLAS Electron and Photon Trigger in pp Collisions at?

s“7 TeV in 2011. ATLAS-CONF-2012-048.

[150] ATLAS Collaboration.Performance of the ATLAS muon trigger in 2011. ATLAS-CONF-2012-099.

[151] M. Cacciari et al. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation Phys. Lett. B 710 (2012) 612. doi: 10.1016/j.physletb.2012.03.013.

[152] P. Bärnreuther, M. Czakon, and A. Mitov.Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections toqq¯Ñt¯t`XPhys. Rev. Lett.

109 (2012) 132001.doi:10.1103/PhysRevLett.109.132001.

[153] M. Czakon and A. Mitov. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels J. High Energy Phys. 1212 (2012) 054.doi:10.1007/JHEP12(2012)054.

[154] M. Czakon and A. Mitov. NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction J. High Energy Phys. 1301 (2013) 080. doi: 10.1007/JHEP01(2013)080.

[155] M. Czakon, P. Fiedler, and A. Mitov. Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through Opα4Sq Phys. Rev. Lett. 110 (2013) 252004.

doi:10.1103/PhysRevLett.110.252004.

[156] M. Czakon and A. Mitov.Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders Comput. Phys. Commun. 185 (2014) 2930.doi: 10.1016/j.cpc.2014.06.021.

[157] S. Catani et al. Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO Phys. Rev. Lett. 103 (2009) 082001. doi: 10.1103/

PhysRevLett.103.082001.

[158] J. M. Campbell and R. K. Ellis. An Update on vector boson pair production at

[158] J. M. Campbell and R. K. Ellis. An Update on vector boson pair production at