• Aucun résultat trouvé

Exponential moments and quadratic variation Finally, one might check that the quadratic variation (E.13) converges to

Appendix E. Some considerations about the microscopic Cole–Hopf process

E.3. Exponential moments and quadratic variation Finally, one might check that the quadratic variation (E.13) converges to

E2t 2

Z 1 0

s(u)|2ϕ2(u)du,

where Φ· is the limit of the current field J·n inD([0, T],C([0,1]). Heuristically, this is indeed the case if one is able to replace ξsnn2(x)2 in (E.13) with (E[ξsnn2(x)])2. This could be proved by using some ideas taken from [GLM17, Lemma 4.3] which permit to control all the exponential moments

sup

x∈{1,...,n}Eρ

hξsnn2(x)−E[ξsnn2(x)]ki, with k ∈N.

BIBLIOGRAPHY

[BG97] Lorenzo Bertini and Giambattista Giacomin,Stochastic Burgers and KPZ equations from particle systems, Commun. Math. Phys.183(1997), no. 3, 571–607.↑89, 90, 158, 160 [BGS16] Oriane Blondel, Patrícia Gonçalves, and Marielle Simon,Convergence to the stochastic

Burgers equation from a degenerate microscopic dynamics, Electron. J. Probab.21(2016), 69 (25 pages).↑89, 92, 121

[CLO01] Chih-Chung Chang, Claudio Landim, and Stefano Olla, Equilibrium fluctuations of asymmetric simple exclusion processes in dimensiond>3, Probab. Theory Relat. Fields 119(2001), no. 3, 381–409.↑115

[Cor12] Ivan Corwin,The Kardar–Parisi–Zhang equation and universality class, Random Matrices Theory Appl.1(2012), no. 1, 1130001 (76 pages).↑88

[CS18] Ivan Corwin and Hao Shen, Open ASEP in the weakly asymmetric regime, Commun.

Pure Appl. Math. 71(2018), no. 10, 2065–2128.↑89, 90, 93, 94, 96, 106, 107, 108

[CST18] Ivan Corwin, Hao Shen, and Li-Cheng Tsai,Asep(q,j) converges to the KPZ equation, Ann. Inst. Henri Poincaré, Probab. Stat. 54(2018), no. 2, 995–1012.↑89

[CT17] Ivan Corwin and Li-Cheng Tsai,KPZ equation limit of higher-spin exclusion processes, Ann. Probab.45(2017), no. 3, 1771–1798.↑89

[DGP17] Joscha Diehl, Massimiliano Gubinelli, and Nicolas Perkowski,The Kardar–Parisi–Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions, Commun.

Math. Phys.354(2017), no. 2, 549–589.↑89, 91

[DT16] Amir Dembo and Li-Cheng Tsai,Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation, Commun. Math. Phys. 341(2016), no. 1, 219–261.

↑89

[FGN13] Tertuliano Franco, Patrícia Gonçalves, and Adriana Neumann,Phase transition in equilib-rium fluctuations of symmetric slowed exclusion, Stochastic Processes Appl.123(2013), no. 12, 4156–4185.↑154

[FGN17] , Equilibrium fluctuations for the slow boundary exclusion process, From Parti-cle Systems to Partial Differential Equations, Springer Proceedings in Mathematics &

Statistics, vol. 209, Springer, 2017, pp. 177–197.↑120, 154

[FGS16] Tertuliano Franco, Patrícia Gonçalves, and Marielle Simon,Crossover to the stochastic Burgers equation for the WASEP with a slow bond, Commun. Math. Phys.346(2016), no. 3, 801–838.↑89, 92, 117, 121

[Fre85] Mark Freidlin,Functional integration and partial differential equations, Annals of Math-ematics Studies, vol. 109, Princeton University Press, 1985.↑106

[Gär87] Jürgen Gärtner, Convergence towards Burger’s equation and propagation of chaos for weakly asymmetric exclusion processes, Stochastic Processes Appl.27(1987), no. 2, 233–

260.↑89

[GH18] Máté Gerencsér and Martin Hairer,Singular SPDEs in domains with boundaries, Probab.

Theory Relat. Fields173(2018), no. 3-4, 697–758.↑90, 94, 107

[GIP15] Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski,Paracontrolled distribu-tions and singular PDEs, Forum Math. Pi3(2015), e6 (75 pages).↑89, 90, 107

[GJ13] Massimiliano Gubinelli and Milton Jara, Regularization by noise and stochastic Burgers equations, Stoch. Partial Differ. Equ., Anal. Comput.1(2013), no. 2, 325–350.↑89, 102 [GJ14] Patrícia Gonçalves and Milton Jara,Nonlinear fluctuations of weakly asymmetric inter-acting particle systems, Arch. Ration. Mech. Anal.212(2014), no. 2, 597–644.↑89, 92, 102, 103, 104, 110, 117

[GJ17] , Stochastic Burgers equation from long range exclusion interactions, Stochastic Processes Appl.127(2017), no. 12, 4029–4052.↑89

[GJS15] Patrícia Gonçalves, Milton Jara, and Sunder Sethuraman,A stochastic Burgers equation from a class of microscopic interactions, Ann. Probab. 43(2015), no. 1, 286–338. ↑89, 92, 110, 117

[GJS17] Patrícia Gonçalves, Milton Jara, and Marielle Simon, Second order Boltzmann–Gibbs principle for polynomial functions and applications, J. Stat. Phys.166 (2017), no. 1, 90–113.↑89, 92, 121, 130, 131

[GLM17] Patrícia Gonçalves, Claudio Landim, and Aniura Milanés,Nonequilibrium fluctuations of one-dimensional boundary driven weakly asymmetric exclusion processes, Ann. Appl.

Probab.27(2017), no. 1, 140–177.↑109, 160, 161, 164

[Gon08] Patrícia Gonçalves, Central limit theorem for a tagged particle in asymmetric simple exclusion, Stochastic Processes Appl.118(2008), no. 3, 474–502.↑92

[GP16] Massimiliano Gubinelli and Nicolas Perkowski,The Hairer–Quastel universality result at stationarity, RIMS Kôkyûroku Bessatsu B59(2016), 101–115.↑89

[GP18a] ,Energy solutions of KPZ are unique, J. Am. Math. Soc.31(2018), no. 2, 427–471.

↑89, 94, 130, 132, 133, 134, 139, 142, 143, 144, 145, 148

[GP18b] , Probabilistic approach to the stochastic Burgers equation, Stochastic partial differential equations and related fields, Springer Proceedings in Mathematics & Statistics, vol. 229, Springer, 2018, pp. 515–527.↑110

[Hai13] Martin Hairer,Solving the KPZ equation, Ann. Math.178(2013), no. 2, 559–664.↑89 [Hai14] ,A theory of regularity structures, Invent. Math.198(2014), no. 2, 269–504.↑89,

90, 107

[Jan97] Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, 1997.↑133

[KL99] Claude Kipnis and Claudio Landim,Scaling limits of interacting particle systems, 1st ed., Grundlehren der Mathematischen Wissenschaften, vol. 320, Springer, 1999.↑98, 102, 114, 116, 120

[KLO12] Tomasz Komorowski, Claudio Landim, and Stefano Olla,Fluctuations in Markov pro-cesses, 1st ed., Grundlehren der Mathematischen Wissenschaften, vol. 345, Springer, 2012.

↑127, 128

[KPZ86] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang,Dynamic scaling of growing inter-faces, Phys. Rev. Lett.56(1986), no. 9, 889–892.↑88

[LCL07] Terry J. Lyons, Michael Caruana, and Thierry Lévy, Differential equations driven by rough paths, Lecture Notes in Mathematics, vol. 1908, Springer, 2007.↑145

[LMO08] Claudio Landim, Aniura Milanés, and Stefano Olla, Stationary and non-equilibrium fluctuations in boundary driven exclusion processes, Markov Process. Relat. Fields 14 (2008), no. 2, 165–184.↑102

[Nua06] David Nualart,The Malliavin calculus and related topics, second ed., Probability and Its Applications, Springer, 2006.↑132, 133, 145, 155

[Pap90] Vassilis G. Papanicolaou,The probabilistic solution of the third boundary value problem for second order elliptic equations, Probab. Theory Relat. Fields87(1990), no. 1, 27–77.

↑106

[Par19] Shalin Parekh, The KPZ Limit of ASEP with Boundary, Commun. Math. Phys. 365 (2019), no. 2, 569–649.↑90, 93, 94, 106

[QS15] Jeremy Quastel and Herbert Spohn,The one-dimensional KPZ equation and its univer-sality class, J. Stat. Phys.160(2015), no. 4, 965–984.↑88

[Qua12] Jeremy Quastel,Introduction to KPZ, Current developments in mathematics, 2011, In-ternational Press., 2012, pp. 125–194.↑106

[Spo17] Herbert Spohn, The Kardar–Parisi–Zhang equation: a statistical physics perspective, Stochastic processes and random matrices, Oxford University Press, 2017, pp. 177–227.

↑88

[Wal86] John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Mathematics, vol. 1180, Springer, 1986, pp. 265–439.↑106, 157, 158, 159

[You36] Laurence C. Young,An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67(1936), no. 1, 251–282.↑145

Manuscript received on 19th March 2018, revised on 24th October 2018,

accepted on 8th February 2019.

Recommended by Editor A. Debussche.

Published under license CC BY 4.0.

This journal is a member of Centre Mersenne.

Patrícia GONÇALVES

Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico Universidade de Lisboa

Av. Rovisco Pais

1049-001 Lisboa (Portugal) pgoncalves@tecnico.ulisboa.pt Nicolas PERKOWSKI Freie Universität Berlin

FB Mathematik und Informatik Arnimallee 7

14195 Berlin (Germany) perkowski@math.fu-berlin.de Marielle SIMON

Inria, Univ. Lille, CNRS

UMR 8524 - Laboratoire Paul Painlevé 59000 Lille (France)

marielle.simon@inria.fr

Documents relatifs