• Aucun résultat trouvé

ETUDES DE LA GENOTOXICITE DES NANOPARTICULES - 129 -

- 131 -

I. Le cas du dioxide de titane: Modifications of the bacterial

reverse mutation test reveals mutagenicity of TiO

2

nanoparticles and byproducts from a sunscreen TiO

2

-based

nanocomposite.

Résumé :

Recommandé par l’Organisation de coopération et de développement économiques (OCDE) le test de détection de mutation reverse bactérien a été récemment utilisé par un certain nombre d'équipes scientifiques dans le but d’évaluer le potentiel mutagène des nanoparticules. Lors de ces essais, le test d’Ames a produit des résultats négatifs alors que les autres tests de génotoxicité effectués sur les mêmes nanoparticules se sont avérés positifs. En effet, lorsque des tests in vitro sont réalisés avec des nanoparticules sur des cellules de mammifères, les réponses diffèrent de celle observées avec le test d’Ames.

Les travaux réalisés précédemment ont montré qu’une simple préexposition des bactéries à des nanoparticules de titane dans une solution présentant une faible force ionique, à savoir le NaCl 10 mM, et à un pH (pH= 5,5) inférieur au point isoélectrique des nanoparticules de titane (6,8), permettait de favoriser fortement les interactions électrostatiques entre ces deux éléments. Ainsi, nous avons supposé qu’en favorisant l’établissement des interactions entre les bactéries et les nanoparticules nous pourrions augmenter l’efficacité du test. Cette étude vise à déterminer le potentiel mutagène des nanoparticules de dioxyde de titane (TiO2-P25, TiO2-NA et TiO2-TLB) en utilisant le test d’Ames en version liquide, appelé également test en fluctuation. Ce test utilise les souches de Salmonella typhimurium TA97a, TA98, TA100 et TA102. Ces expérimentations ont montré que le test, lorsqu’utilisé de façon conventionnelle, n’est pas adapté à l’étude des nanoparticules. En effet, le milieu d’exposition utilisé dans le test présente une force ionique importante qui minimise les interactions électrostatiques entre les microorganismes et les TiO2-NPs conduisant le test à produire de faux-négatifs.

En modifiant la procédure de test en fluctuation, nous avons mis en évidence le potentiel mutagène des nanoparticules de dioxyde de titane. La souche de S. typhimurium TA 102 s’est également révélée être la plus sensible pour détecter ce potentiel mutagène, laissant à penser que l’effet mutagène implique un stress oxydatif malgré la conduite des expérimentations à l'obscurité afin de ce prémunir des effets photocatalytiques des nanoparticules.

ContentslistsavailableatSciVerseScienceDirect

Toxicology Letters

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / t o x l e t

Modificationsofthebacterialreverse mutationtest revealsmutagenicityofTiO

2

nanoparticlesandbyproducts fromasunscreen TiO

2

-basednanocomposite

StéphaneJominia,JérômeLabilleb,c,PascaleBaudaa,c,ChristophePagnouta,c,

aLaboratoiredesInteractionsEcotoxicologie,Biodiversité,Ecosystèmes(LIEBE),UMR7146,CNRS-UPV-M,UniversitédeLorraine,rueduGénéralDelestraint,F-57070Metz,France

bCEREGEUMR6635CNRS/Aix-MarseilleUniversité,Europôledel’Arbois,13545Aix-en-Provence,France

cInternationalConsortiumfortheEnvironmentalImplicationsofNanotechnology(iCEINT),Europoledel’Arbois,F-13545AixenProvence,France

h i g h l i g h t s

◮TheAmestestisnotsuitablefornanoparticle(NP)genotoxicityassessment. ◮TheAmestestmediumpreventselectrostaticinteractionsbetweenbacteriaandNPs. ◮TheAmestestmediumstronglypromotestheaggregationofNPs.

◮Simplepre-exposurestepinanadequatemediumimprovetheaccuracyofthetest. ◮ModifiedAmestestshowedmutagenicityofNP-TiO2andNP-TiO2-basednanocomposite.

a r t i c l e i n f o

Articlehistory:

Received30May2012

Receivedinrevisedform8August2012

Accepted19September2012

Available online 28 September 2012 Keywords:

TiO2nanoparticles

Genotoxicity

Bacterialreversemutationtest

Fluctuationtest

Electrostaticinteractions

a b s t r a c t

Thebacterialreversemutationtest,recommendedbytheOrganizationforEconomicCo-operationand Development(OECD)todeterminegenotoxicityofchemicalcompounds,hasbeenrecentlyusedby sev-eralauthorstoinvestigatenanoparticles.Surprisingly,testresultshavebeennegative,whereasinvitro mammaliancelltestsoftengivepositivegenotoxicresponses.Inthepresentstudy,weusedthe fluctua-tiontestprocedurewiththeSalmonellatyphimuriumstrainsTA97a,TA98,TA100andTA102todetermine themutagenicpotentialofTiO2nanoparticles(NP-TiO2)andshowedthat,whenitisused convention-ally,thistestisnotsuitablefornanoparticlegenotoxicityassessment.Indeed,themediumusedduring exposurepreventselectrostaticinteractionsbetweenbacterialcellsandnanoparticles,leadingto false-negativeresponses.Weshowedthatasimplepre-exposureofbacteriatoNP-TiO2inalowionicstrength solution(NaCl10mM)atapHbelowthenanoparticleisoelectricpoints(pH5.5)canstronglyimprove theaccuracyofthetest.Thus,basedontheseimprovements,wehavedemonstratedthegenotoxicityof theengineeredNP-TiO2testedandaNP-TiO2byproductfromasunscreennanocomposite.Itwasalso shownthatstrainTA102ismoresensitivethantheotherstrains,suggestinganoxidativestress-mediated mechanismofgenotoxicity.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Duetotheincreasingindustrializationofmanycountriesand resulting technological advances, environmental pollution has becomeaserioushealthissue.Manyeffortshavebeenmadeto pro-tecttheenvironmentandhumanhealth.Apriorityareaconcerns thedevelopmentofin vitroassaystoevaluatethetoxicological effectsofenvironmentalchemicalsandthenbuildprioritization modelsofinvivotoxicity.Overtheyears,multiplebioassayshave

∗ Correspondingauthorat:LaboratoiredesInteractionsEcotoxicologie,

Biodiver-sité,Ecosystèmes(LIEBE),CNRS-UMR7146,UniversitédeLorraine,rueduGénéral

Delestraint,F-57070Metz,France.Tel.:+33387378657;fax:+33387378512.

E-mailaddress:christophe.pagnout@univ-lorraine.fr(C.Pagnout).

beendeveloped utilizing many organisms. Microbialtests have severaladvantagesoverotherbioassays,includingrapidresponse timesduetothemuchshortermicrobiallifecycles,reproducibility oftestconditions,amenabilitytogeneticmanipulations,increased sensitivityandreducedcost(Davoren,2005).Inaddition, microor-ganismspossessthemajorityofthesamebiochemicalpathways presentin higherorganisms,theyexhibitsignificantmembrane structureorganizationandgenerallyelicittoxicresponsestomany chemicalsthroughmechanismssimilartothatofhigherorganisms (Qureshietal.,1984).

The bacterial reverse mutation assay is recommended by national and international environmental protection agencies for substance evaluations (e.g. Organization for Economic Co-operationandDevelopment(OECDtestguideline 471);andThe InternationalConference on Harmonization (ICH)) (Mortelmans

0378-4274/$–seefrontmatter © 2012 Elsevier Ireland Ltd. All rights reserved.

ofthetwoassaysrecommendedbyTheCommitteeon Mutageni-cityofChemicalsinFood,ConsumerProductsandtheEnvironment (COM)(Kirklandetal.,2011).Thebacterialreversemutationtest usesseveralstrainsofSalmonellatyphimuriumwithmutated his-tidinesynthesisgenes.Thetestprincipleisbasedonthefactthat reversemutationscausedbyexposuretomutageniccompounds canreactivatetheabilityofmutatedbacterialstrainsto synthe-sishistidine,therebyallowingthemtogrowintheabsenceofthis essentialaminoacid.Severalproceduresforperformingthe bac-terial reversemutation test have beendescribed. Among those commonlyusedare theplateincorporationmethod,commonly namedtheAmestest(Amesetal.,1972,1973a,b),the preincuba-tionmethod(MaronandAmes,1983;Aeschbacheretal.,1987), thefluctuationmethod(Greenetal.,1976;Hubbardetal.,1984; McPherson and Nestmann, 1990), and the suspension method (ThompsonandMelampy,1981).Overtheyears,manyvalidation studieshavebeenperformedtodeterminethesensitivityand cor-relationofthistestwithanimalcarcinogenicitystudies.Ithasbeen establishedthatthereisahighpredictivityofapositivemutagenic responseinthetestforrodentcarcinogenicityrangingfrom77% to90%(McCannetal.,1975;Tennantetal.,1987;Zeiger,1998). To date, there are thousands of research and testing laborato-riesthroughouttheworldusingthis assaytoscreenpotentially mutagenicdrugsandchemicals.Manycompaniesandregulatory agenciesusetheresultsfromthisassayaspartoftheirshort-term toxicologicaltestingprogramstodeterminechemicalsafety(Felton andWu,2003).

Nanotechnology is a relatively new branch of science, her-alded as a technological revolution (The White House, 2000). Engineerednanoparticles have rapidlymoved from the labora-torytoindustryandarecurrentlybeingusedinmanyconsumer products. Currently, there are over 1000 products in the con-sumermarketplacethatincludenanomaterials(WoodrowWilson Database:http://www.nanotechproject.org),which isprojectedto substantially increasein thenearfuture. Thisphenomenon has arousedgreatconcernaboutpotentialhumanhealtheffectsand, onalargerscale,environmentaleffects(Neletal.,2006),giving birth toa newbiological field knownas“Nanotoxicology”. The RoyalSocietyandRoyalAcademyofEngineeringfirstraisedthis concernin 2003 (The RoyalSociety and theRoyalAcademy of Engineering,2003;TheRoyalSociety,2004), pavingthewayfor a rapid increase in investigational studieson nanoparticle tox-icity; in particular, genotoxicity studies, asmany nanoparticles werefoundtocausechromosomalaberrations,DNAstrandbreaks, oxidativeDNAdamage,andsubsequentgeneticmutations(Singh etal.,2009).Incommonlyusedinvitro(chromosomalaberrations, cometassay,micronucleus)andinvivomammaliantestcell sys-tems,nanoparticleshavebeenlargelyfoundtopromotepositive genotoxicresponses,whilenegativeresponseshavebeen gener-allyobtainedfor thesenanoparticleswith thebacterialreverse mutationtest(Doaketal.,2012).Itwasreportedthatwithin19 publishedstudies,wherethistestwasusedforthe genotoxicolog-ical analysis of nanoparticles, 17 showed negative mutagenicity. Thetworemainingstudiesonlyrevealedweakmutageniceffects. Therefore,thesestudiesseemedtohaveindicatedthatalthough theAmestestisexcellentfor testingchemicalmutagenic activ-ity,itdoesnotappeartobesuitablefornanoparticles.Thismight berelatedtothedegreeofnanoparticleuptakebybacterialcells, whichislikelytobelessthaninmammaliancells(Singhetal.,2009; Doaketal.,2012).Indeed,bacteriacannotperformendocytosisand theircellwallformsabarrieragainstsimplediffusionof nanopar-ticles.Thislackofuptakecouldpotentiallyleadtofalsenegative results.

Basedonourpreviouswork(Pagnoutetal.,2012),wethinkthat anotherplausiblehypothesis thatleadstofalse negativeresults

cellsduetotheuseofaninappropriatemediumduringthe expo-sure.Wealsothinkthatperforming thebacterialreversemutation testbythefluctuationmethodinsteadoftheplateincorporation method,withapre-exposurestepin alow-ionicstrength solu-tionatapHvaluebelowthenanoparticleisoelectricpoints(NaCl 10mM,pH5.5),couldimprovetheseinteractionsandmake the testmoreaccuratefortheassessmentofthenanoparticle geno-toxicity.Asaconsequence,inthepresentstudy,weassessedthe mutagenic potential of two engineered TiO2 nanoparticles and a TiO2-byproductderived froma nanocompositematerial com-monlyusedinsunscreenswiththeconventionalfluctuationtest andwithamodifiedversionofthistestaccordingtothe modifica-tionmentionedabove.TiO2nanoparticles(NP-TiO2)wereusedas amodelinthisstudyforthefollowingreasons:(i)these nanopar-ticlesarewidelyusedinconsumerproducts(e.g.paints,plastics, paper,ceramics,cosmetics,andsunscreens)withexpanded appli-cationsoverthelastdecade(Colvin,2003;Gleicheetal.,2006); (ii)in2006,TiO2wasreclassifiedfromUnclassifiableasto carcino-genicityinhumans(Group3carcinogen)toPossiblycarcinogenicto humans(Group2Bcarcinogen)basedonsufficientevidenceusing experimentalanimals(Ngetal.,2010);(iii)NP-TiO2wasrecently listedbytheOECDasoneoftheprioritynanomaterialsfor immedi-atetesting(OECD,2008);(iv)NP-TiO2nanoparticlesareminimally water-solubleandtheirpotentialcarcinogeniceffects cannotbe attributedtothereleaseoftitaniumionsinthemedium;and(v) severalstudiesshowednomutagenicity(Warheitetal.,2007;Pan etal.,2010)orveryweakmutagenicity(Kumaretal.,2011)caused byNP-TiO2withthebacterialreversemutationtest(plate incor-poration procedure), whereas NP-TiO2 hasbeen found tohave positivegenotoxicresponsesinotherinvitrocellulartestsystems (Balasubramanyametal.,2009;DiVirgilioetal.,2010;Osmanetal., 2010;Shietal.,2010).

2. Materialsandmethods

2.1. Evaluatednanomaterials

TiO2nanopowderAEROXIDE®P25(TiO2-P25)wasprovidedbyEvonikDegussa

GmbH (Frankfurt, Germany, Stock # 4168050298). These nanoparticles are

describedbythesupplierashavingaprimarysizeof25nmwithaspecificsurface

area(SSA)of50±15m2/gandaratioofanatase/rutileformsof80/20.TheTiO2-P25

stocksuspensionwaspreparedbydispersing100mgofNP-TiO2in10mLof

ster-ileultrapurewater(milli-Qwater,18.2Mcm).Theresultantsuspensionwasthen

probe-sonicated(SonicsVibra-cell750W,Sonics&Materials,Inc.,Newton,CT,USA;

frequency20kHz,3mmmicrotip,amplitude40%)for30minat4◦Ctohomogenize

andbreakthelargeragglomeratesapart(Pagnoutetal.,2012).

ThesecondtypeofNP-TiO2 usedinthisstudy(TiO2-NA)wasprovidedas

a15%(w/v)stablesuspensioninacidifiedwaterproducedbyNanostructured

&AmorphousMaterials, Inc.(Houston,TX,USA–Stock#7012WJWR).These

nanoparticlesaredescribedbythesupplierasbeing100%anatase,witha

pri-marysizerangingfrom5to30nm,aSSAof200–220m2/g,andapurity>99.5%.

Thestock suspension wasprepared to10g/Lby dilution insterileultrapure

water.

Thethirdnanomaterialusedinthisstudy wasabyproductobtainedafter

alterationofaTiO2-basednanocomposite,namelyT-LiteTMSF(BASF,Germany)

(TiO2-TLB), which is commonly usedin sunscreensas a UVblocker. The

T-LitenanocompositeconsistedofaTiO2rutilecore(5–10nmcross-sectionper

50–200nmlength)arrangedtogetherinlargeclusters,whichhadanaveragesize

of200nm.Theseclusterswereembeddedinanamorphouslayerofaluminum

oxide[Al(OH)3]andpolydimethylsiloxane(PDMS)(Labilleetal.,2010;Auffanetal.,

2010).Thebyproduct,resultingfromanacceleratedageingprocess,wasprovidedby

JérômeLabille(CEREGELaboratory,Aix-en-Provence,France).Briefly,thealteration

processconsistedofmixing100mgofTiO2-TLBin250mLofultrapurewater.The

mixturewasmagneticallystirredat690rpmunderawhitelight(400WPhilips®

114MasterHPI-TPlus)for48h.Afteralteration,thismixturewassettledfor48h

andthesupernatantcontainingstablealteredTiO2nanocomposites(byproducts)

wasobtained(Labilleetal.,2010;Auffanetal.,2010).Aspreviouslydescribedby

Bigorgneetal.(2011),thequantityofTiO2byproductswasmeasuredbyfiltering

analiquotofsuspension(20mL)througha25nmmembranefilteranddryingfilter

at105◦Cfor24h.TheconcentrationofTiO2byproductsobtainedwasadjustedto

Theshapesandprimarysizesofnanoparticlesweredeterminedbytransmission

electronmicroscopy(TEM),usingaCM20 Philipselectronmicroscopeat200kVat

theServiceCommundeMicroscopiesElectroniquesetdeMicroanalyses(SCMEM,

Nancy,France).Sampleswerepreparedbyevaporatingadropletof

nanoparti-clesuspensiononacoppergridatroomtemperature.Sizewasdeterminedusing

100randomlychosennanoparticles.Nanoparticlecrystallinestructureswere

deter-minedbyX-raypowderdiffraction(XRD).Electrophoreticmobilityandnanoparticle

sizedistributionmeasurementsinaqueousmediawereperformedwithaZetaSizer

3000HS(MalvernInstruments,Worcestershire,UK).

2.3. Bacterialelectrophoreticmobility

Bacterial electrophoretic mobilitymeasurements were conducted using a

ZetaphoremeterIV(CADInstrumentations,LesEssartsleRoi,France)inaquartz

Suprasil®cell(HeraeusQuarzglasGmbH&Co.,Hanau,Germany)at24◦Cfromthe

reflectionofalaserbeambybacteriatrackedwithacharge-coupleddevice

cam-era.Imageanalysissoftwarewasusedtoprocessrecordedimagesinrealtimeto

calculatetheelectrophoreticmobilitiesfromthedisplacement(migrationmotion)

ofbacteriasubjectedtoaconstantdirect-currentelectricfield(800V/m).Different

cycleswererecordedtoyield100bacterialmobilitymeasurements.

2.4. Theconventionalfluctuationtest

ThebacterialreversemutationtestwasperformedusingS.typhimuriumstrains

TA97a,TA98todetectGCframeshiftmutations,strainTA100forGCbase-pair

substi-tutionmutationsandstrainTA102forATbase-pairsubstitutionmutations,without

S9metabolicactivation.ThesestrainswereagiftfromBruceAmes(Universityof

California,Berkeley,CA,USA).Thegeneticintegritiesofthesestrainswere

veri-fiedbeforethetestsforhistidine/biotin,rfamarkerandpKM101plasmid(Maron

andAmes,1983).Thetestwasconductedinliquidmediumin96-wellmicrotiter

plates,accordingtothefluctuationmethod(EnvironmentCanada,1993).Briefly,

bacterialstrainsweregrownovernightinOxoidbrothsupplementedwiththe

appropriateantibiotics(25�g/mLAmpicillinforstrainsTA97a,TA98,andTA100and

25�g/mLAmpicillin+2�g/mLTetracyclineforstrainTA102)at37◦Cwhileshaking.

Toavolumeof2.5mLoftheAmesreagentmixture(108mLof5.5×concentrated

Davis–Mingiolisalts)[38.5g/LK2HPO4,11.0g/LKH2PO4,5.5g/L(NH4)2SO4,1.375g/L

sodiumcitrate,0.55g/LMgSO4·7H2O–autoclaved15minat121◦C],24mLof40%

(w/v)d-glucose(6mLofd-biotin[0.1mg/mL],0.3mLofl-histidine[1mg/mL]and

12mLofbromocresolpurple[2mg/mL]),5�Lofanovernightcultureand17.5mL

ofsterileultrapurewatercontainingnanoparticles(1,10,100mg/Lorwaterasa

control)wereadded,givingfinalexposureNP-TiO2concentrationsof0,0.875,8.75,

87.5mg/L.A200�Lvolumeofthe mixturewasdispensedintowellsof96-well

microtiterplatesandincubatedfor5daysat37◦Cinthedark.Classical

posi-tivecontrols,9-aminoacridine(10�g/mL),2-nitrofluoren(0.4�g/mL),sodiumazide

(25ng/mL)andcumenehydroperoxide(3.5�g/mL),wereusedforTA97a,TA98,

TA100andTA102,respectively.Distillatedwaterwasusedasnegativecontrol.

Sterilitycontrols(i.e.sterilityofthemedia,sterilityoftheNP-TiO2andsterility

ofthepositivecontrols)werealsoincludedforeachtest.Thetestwasconsidered

validonlyifthepositivecontrolsinducedanumberofpositivewellssignificantly

higherthanthenumberobtainedwiththenegativecontrol(spontaneous

rever-tants),andonlyifthewellsofallthesterilitycontrolsstayednegativeduringthe

experimentation(0positivewellonthe96tested).

2.5. Themodifiedfluctuationtest

BacterialstrainsweregrownovernightinOxoidbrothsupplementedwiththe

appropriateantibiotic(25�g/mLAmpicillinforTA97a,TA98,TA100and25�g/mL

Ampicillin+2�g/mLTetracyclineforTA102)at37◦Cwhileshaking.Avolumeof

2mLoftheseovernightculturesweretransferredto500mLErlenmeyerflasks

containing200mL of Luria–Bertani medium with the appropriate antibiotics

andincubatedat37◦Cwhileshakinguntiltheyreachedanopticaldensity(OD)

of0.5–0.6at600nm(exponentialgrowthphase).Thebacterialcellswerethen

centrifugedat8000×gfor10minat4◦C,washedtwicewithNaCl10mM(ultrapure

water–pH5.5),andresuspendedinthesamesalinesolutionatafinalODof4.0at

600nm.A200�Lvolumeofthesebacterialsuspensionswastransferredto100mL

flaskscontaining20mLofNaCl10mM(ultrapurewater–pH5.5)andnanoparticles

(1mg/L,10mg/Lor100mg/Lorwaterasacontrol).Afterashortpre-exposure

(0.1h),10h or20hat20◦Cunder agitation(150rpm), 500�Laliquotswere

transferredto2.5mLoftheAmesreagentmixture(previouslydescribed)and17mL

ofsteriledistilledwater,givingfinalconcentrationsofNP-TiO2inthefluctuation

testof0,0.025,0.25and2.5mg/L.A200�Lvolumeofthemixturethusobtained

wasdispensedinto96-wellmicrotiterplatesandincubatedfor5daysat37◦Cin

thedark.Experimentswereperformedindependentlytwiceandonemicroplate

wasusedforeachconcentration.Whentheseexperimentsgavecontradictory

results,theexperimentwasrepeatedathirdtime.Classicalpositive,negative,and

sterilitycontrolswerealsoincludedaspreviouslydescribedinSection2.4.

Transmissionelectronmicroscopy(TEM)observationswererealizedtostudy

NPsandbacterialinteractions.Afterexposure,bacterialsuspensionwascentrifuged

at10,000×gfor10minat4◦C.Then,thecellswerefixedwitha2.5%glutaraldehyde

solution,washedtwicewithultrapurewater,post-fixedwithosmiumtetraoxide

(OsO4),washedthreetimeswithultrapurewater,andthen,dehydratedingraded

concentrationsofethanol(Strumetal.,1971).Thepelletobtainedwasembedded

inEponandpolymerizedfor2hat38◦Cand2daysat60◦C.Ultra-thinsections

(90nm)werecollectedovercoppergridsandcounterstainedwithleadcitrateand

uranylacetate.ThesesectionswerethenobservedwithaCM20Philipselectron

microscopeat200kVattheServiceCommundeMicroscopiesElectroniquesetde

Microanalyses(SCMEM,Nancy,France).

3. Resultsanddiscussion 3.1. NP-TiO2characterization

TheNP-TiO2usedinthisstudyhasbeenthoroughly character-ized.AnalysesconfirmedthatTiO2-P25isamixtureofanataseand rutileforms(∼84%anataseand16%rutile)withanaverage pri-maryparticlesizeof23±4.9nm(SupportingInformationFig.S1). Dynamiclight scattering(DLS)measurementsrevealedthatthe averagehydrodynamicdiameterofthenanoparticlestock suspen-sionobtainedafterdispersioninmilli-Qwaterandprobesonication rangedbetween60and80nm(SupportingInformationFig.S1), meaningthatthenanoparticleswereagglomerated.Theisoelectric pointofTiO2-P25waspreviouslydeterminedtobeapproximately pH6.8(Pagnoutetal.,2012).

TiO2-NA,whichwasreportedtobe100%anatase,wasfound tobeamixtureofanataseandbrookiteforms(∼86%anataseand 14% brookite)withanaverageprimaryparticlesizeof5.7±1.9nm (Supporting Information Fig. S2). DLS measurements revealed thatthestocksuspensionprovidedbyNanoAmor,Inc.waswell dispersedwithanaveragehydrodynamicdiameterofthe nanopar-ticlesbetween5and10nm(SupportingInformationFig.S2).The isoelectricpointoftheTiO2-NAwasfoundtobearoundpH6.5(data

Documents relatifs