• Aucun résultat trouvé

CHAPITRE 6 CONCLUSION

6.3 Am´ eliorations futures

Parmi les aspects qui n’ont pas ´et´e ´etudi´es dans ce m´emoire, un des plus int´eressants serait sans doute d’´etablir des crit`eres permettant de discerner les ensembles de donn´ees pour les- quels il est pr´ef´erable d’estimer le vecteur al´eatoire de ceux pour lesquels il vaut mieux choisir les sc´enarios directement `a partir des donn´ees. Par exemple, quel intervalle de confiance sur

l’estimation des param`etres du vecteur al´eatoire est n´ecessaire afin que la QVAC soit avan- tageuse par rapport `a l’algorithme d’´echange des centres ? Un plus grand nombre de donn´ees avantage-t-il une m´ethode plus que l’autre ?

Il existe ´evidemment plusieurs m´ethodes de g´en´eration de sc´enarios. Nous n’en avons es- sentiellement consid´er´e qu’une seule dans ce m´emoire (avec certaines variantes). Il pourrait donc ˆetre int´eressant de confronter la quantification optimale `a d’autres m´ethodes de g´e- n´eration de sc´enarios. Existe-t-il des instances pour lesquelles certaines m´ethodes sont plus efficaces que d’autres ? Le cas ´ech´eant, est-il possible d’extraire les caract´eristiques du pro- bl`eme afin de s´electionner la m´ethode la plus performante ?

Il existe ´egalement une ´enorme quantit´e d’algorithmes des k-moyennes et k-m´edianes qui pourraient ˆetre utilis´es afin de minimiser la distance de Wasserstein et qui m´eritent d’ˆetre explor´es en fonction de la quantit´e de donn´ees disponibles, du nombre de sc´enarios requis et de la dimension du probl`eme.

Finalement, comme il ´et´e dit pr´ec´edemment, certaines des m´ethodes pr´esent´ees dans ce m´emoire n’ont pu ˆetre test´ees sur des applications concr`etes. Il serait donc n´ecessaire de les ´

R´EF´ERENCES

BENDERS, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische mathematik, 4, 238–252.

BIRGE, J. et LOUVEAUX, F. (2011). Introduction to Stochastic Programming. Springer Series in Operations Research and Financial Engineering. Springer New York.

CARDOT, H., CENAC, P. et ZITT, P.-A. (2013). Efficient and fast estimation of the geo- metric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18–43.

CARINO, D., KENT, T., STACY, C., SYLVANUS, M., TURNER, A., WATANABE, K. et ZIEMBA, W. (1994). The russell-yasuda kasai model : an asset/liability model for a japanese insurance company using multistage stochastic programming. Interfaces, 24, 29 – 49.

CHAN, Z., COLLINS, L. et KASABOV, N. (2006). An efficient greedy k-means algorithm for global gene trajectory clustering. Expert Systems with Applications, 30, 137 – 41. CHARIKAR, M., GUHA, S., TARDOS, E. et SHMOYS, D. B. (2003). A constant-factor approximation algorithm for the k-median problem. vol. 65, 129 – 149.

CHEN, K. (2009). On coresets for k-median and k-means clustering in metric and euclidean spaces and their applications. SIAM Journal on Computing, 39, 923 – 47.

DU, Q., EMELIANENKO, M. et JU, L. (2006). Convergence of the lloyd algorithm for computing centroidal voronoi tessellations. SIAM Journal on Numerical Analysis, 44, 102– 119.

DUDLEY, R. M. (1976). Probabilities and metrics : Convergence of laws on metric spaces, with a view to statistical testing, vol. 45. Aarhus Universitet, Matematisk Institut.

ERMOLIEV, Y. (1983). Stochastic quasigradient methods and their application to system optimization. Stochastics : An International Journal of Probability and Stochastic Processes, 9, 1–36.

EVERITT, B. S., LANDAU, S., LEESE, M. et STAHL, D. (2011). An Introduction to Classification and Clustering. John Wiley & Sons, Inc.

GRAHAM, R. L., KNUTH, D. E. et PATASHNIK, O. (1994). Concrete Mathematics : A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, seconde ´edition.

GULPINAR, N., RUSTEM, B. et SETTERGREN, R. (2004). Simulation and optimization approaches to scenario tree generation. Journal of Economic Dynamics & Control, 28, 1291–1315.

HEYDE, C. (2010). On a property of the lognormal distribution. R. Maller, I. Basawa, P. Hall et E. Seneta, ´editeurs, Selected Works of C.C. Heyde, Springer New York, Selected Works in Probability and Statistics. 16–18.

HIGLE, J. et SEN, S. (1991). Stochastic decompositino - an algorithm for 2-stage linear programs with recourse. Mathematics of Operations Research, 16, 650–669.

HOCHREITER, R. et PFLUG, G. (2007). Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annals of Operations Research, 152, 257 – 72.

HUBER, P. J. (2005). The Weak Topology and its Metrization, John Wiley & Sons, Inc. 20–42.

HYLAND, K., KAUT, M. et WALLACE, S. W. (2003). A heuristic for moment-matching scenario generation. Computational Optimization and Applications, 24, 169 – 185.

HYLAND, K. et WALLACE, S. W. (2001). Generating scenario trees for multistage decision problems. Management Science, 47, 295 – 307.

INDYK, P. (1999). Sublinear time algorithms for metric space problems. Conference Pro- ceedings of the Annual ACM Symposium on Theory of Computing, 428 – 434.

INFANGER, G. (1992). Monte carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs. Annals of Operations Research, 39, 69–95.

JAIN, K. et VAZIRANI, V. V. (2001). Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM, 48, 274 – 296.

JAMSHIDIAN, F. et ZHU, Y. (1996). Scenario simulation : Theory and methodology. Finance and Stochastics, 1, 43–67.

JOLLIFFE, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. Springer, seconde ´edition.

KANTOROVICH, L. V. et RUBINSTEIN, G. S. (1958). On a space of completely additive functions. Vestnik Leningrad. Univ., 13, 52–59.

KAUT, M. (2013). A copula-based heuristic for scenario generation. Computational Mana- gement Science, 25.

KAUT, M. et WALLACE, S. W. (2003). Evaluation of scenario-generation methods for stochastic programming. World Wide Web, Stochastic Programming E-Print Series. 14– 2003.

KAUT, M. et WALLACE, S. W. (2011). Shape-based scenario generation using copulas. Computational Management Science, 8, 181–199.

KEEFER, D. (1994). Certainty equivalents for three-point discrete-distribution approxima- tions. Management Science, 40, 760 – 73.

KORUPOLU, M., PLAXTON, C. et RAJARAMAN, R. (2000). Analysis of a local search heuristic for facility location problems. Journal of Algorithms, 37, 146–188.

KOUWENBERG, R. (2001). Scenario generation and stochastic programming models for asset liability management. European Journal of Operational Research, 134, 279 – 292. LATORRE, J. M., CERISOLA, S. et RAMOS, A. (2007). Clustering algorithms for scenario tree generation : Application to natural hydro inflows. European Journal of Operational Research, 181, 1339–1353.

LEGRAIN, A. (2012). Generation de sc´enarios pour la demande en personnels durant plusieurs periodes. M´emoire de maˆıtrise, ´Ecole Polytechnique de Montr´eal.

LEMIEUX, C. (2009). Variance reduction techniques. Monte Carlo and Quasi-Monte Carlo Sampling, Springer New York, Springer Series in Statistics. 1–52.

LEVIN, V. L. et MILYUTIN, A. A. (1979). The problem of mass transfer with a discon- tinuous cost function and a mass statement of the duality problem for convex extremal problems. Russian Mathematical Surveys, 34, 1–78.

LIKAS, A., VLASSIS, N. et J. VERBEEK, J. (2002). The global k-means clustering algo- rithm. Pattern Recognition, 36, 451 – 461.

LLOYD, S. (1982). Least squares quantization in pcm. Information Theory, IEEE Tran- sactions on, 28, 129–137.

MILLER, A.C., I. et RICE, T. (1983). Discrete approximations of probability distributions. Management Science, 29, 352 – 62.

MOULINES, E. et BACH, F. R. (2011). Non-asymptotic analysis of stochastic approxima- tion algorithms for machine learning. J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira et K. Weinberger, ´editeurs, Advances in Neural Information Processing Systems 24. 451–459. PACQUEAU, R. (2011). Optimisation stochastique d’horaires de personnel. M´emoire de maˆıtrise, ´Ecole Polytechnique de Montr´eal.

PAGES, G. et PRINTEMS, J. (2003). Optimal quadratic quantization for numerics : the gaussian case. Monte Carlo Methods and Applications, 9, 135 – 65.

PEARSON, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50, 157–175.

PFLUG, G. (2001). Scenario tree generation for multiperiod financial optimization by op- timal discretization. Mathematical Programming, 89, 251–271.

RACHEV, S., KLEBANOV, L., STOYANOV, S. et FABOZZI, F. (2013). Monge–kantorovich mass transference problem, minimal distances and minimal norms. The Methods of Distances in the Theory of Probability and Statistics, Springer New York. 109–143.

SKLAR, A. (1996). Random variables, distribution functions, and copulas—a personal look backward and forward, Institute of Mathematical Statistics, Hayward, CA, vol. Volume 28 de Lecture Notes–Monograph Series. 1–14.

SUTIENE, K. et PRANEVICIUS, H. (2007). Scenario generation employing copulas. World Congress on Engineering. Hong Kong, China, 777 – 84.

TOPALOGLOU, N., VLADIMIROU, H. et ZENIOS, S. (2002). CVaR models with selective hedging for international asset allocation. Journal of Banking & Finance, 26, 1535–1561. VALLENDER, S. (1974). Calculation of the wasserstein distance between probability dis- tributions on the line. Theory of Probability & Its Applications, 18, 784–786.

VAN SLYKE, R. M. et WETS, R. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17, 638–663.

VELMURUGAN, T. et SANTHANAM, T. (2010). Computational complexity between k- means and k-medoids clustering algorithms for normal and uniform distributions of data points. Journal of Computer Sciences, 6, 363 – 8.

WASSERSTEIN, L. (1969). Markov processes on a countable product space, describing large systems of automata (in russian). Problemy Peredachi Infomatsii, 5, 64–73.

Documents relatifs