• Aucun résultat trouvé

Chapitre 6 On the use of a single-fiber multi-point plastic scintillation detector for Ir-

7.3. La dosimétrie in vivo en curiethérapie à haut débit

Les chapitres 2, 3 et 6 ont démontré la possible utilisation des détecteurs à scintillateurs plastiques comme dosimètres in vivo en temps réel pour la curiethérapie à haut débit. La capacité de mesurer la dose déposée par la source d’Ir-192 pour le traitement en entier, à l’intérieur de chacun des cathéters et à chaque position de source a été vérifiée pour une simulation de traitement de prostate dans un fantôme d’eau, au chapitre 3, avec le détecteur à un point. La justesse et la précision du détecteur se sont avérées être des plus importantes lorsque la vérification de la dose à chaque position de source est désirée. Celles-ci se sont montrées dépendantes du temps d’intégration de sorte que plus l’acquisition est longue, plus la mesure est précise. Toutefois, une résolution temporelle moindre mène à un plus petit nombre de position de sources pour lesquelles on peut vérifier le dépôt de dose. Le détecteur utilisé ici avait une résolution temporelle se limitant à 5 secondes, une limite imposée par l’électronique composant l’électromètre utilisé pour la lecture du signal. Nous avons aussi démontré que les détecteurs à scintillation peuvent permettre de détecter les possibles erreurs de positionnement de la source et des cathéters, l’inversion des cathéters ainsi que les erreurs dans la dynamique du traitement.

Les résultats que nous avons obtenus au chapitre 6 démontraient une amélioration de la résolution temporelle pour le détecteur multi-point grâce à l’approche spectrale. Les acquisitions de 3 s se sont avérées être un bon compromis entre résolution temporelle et précision. La moyenne des justesses et la précision de mesures effectuées avec ce détecteur étaient respectivement de (3,4 ± 2,1)%, (3,0 ± 0,7)% et (4,5 ± 1,0)% pour respectivement les éléments distal, médian et proximal. L’utilisation d’une moyenne de la justesse pondérée par la dose au carré à chaque détecteur a permis d’améliorer considérablement la justesse du détecteur, passant de 2,7% à 0,6% pour une distance radiale fixée à 3 cm.

Si le premier détecteur développé pour la curiethérapie à haut débit était viable, le détecteur multi-point l’est d’autant plus, en plus de donner accès à plus de points de mesure. C’est donc le détecteur qui serait à préconiser pour une implémentation lors d’une étude clinique. Le détecteur développé au chapitre 6 donnant des résultats très encourageants, il serait effectivement intéressant que ce type de détecteur soit utilisé lors

125 d’une étude clinique afin de mesurer la dose à la tumeur et aux organes environnants en curiethérapie de prostate. Il sera important de développer des procédures permettant de localiser le mieux possible le détecteur et la source radioactive dans l’espace, car l’incertitude sur la position a été démontrée comme étant l’aspect critique sur la précision, tel que montré dans cette étude et par Andersen et al.41 Le gabarit de positionnement des cathéters que nous avons développé au chapitre 2 et utilisé aux chapitres 3 et 6 pourraient aussi être utilisé pour la calibration du détecteur en suivant les étapes établies au chapitre 6. À plus grande échelle, lorsque le détecteur aura été validé cliniquement, il pourra permettre d’effectuer les vérifications de dose et positions de source en temps réel et le traitement pourrait se voir modifié, ou complètement arrêté, en fonction des mesures effectuées.

Les résultats présentés dans les chapitres 2 à 6 de cette thèse démontrent que d’importantes améliorations ont été effectuées et pourraient être utilisées en curiethérapie à haut débit de dose. On peut s’attendre dans les prochaines années à voir les détecteurs à scintillateurs plastiques être implantés en clinique et les domaines d’application se multiplier vu les nombreux avantages associés à ce type de détecteur.

Bibliographie

1 "Grand dictionnaire terminologique," (Office québécois de la langue française,

www.granddictionnaire.com).

2 J. Mazeron, P. Scalliet, E. Van Limbergen, E. Lartigau, "Radiobiology of Brachytherapy and the Dose-Rate Effect," in The GEC ESTRO Handbook of Brachytherapy (ESTRO, Brussels, 2002), pp. 95-121.

3 Y. Kaneyasu, M. Kita, T. Okawa, K. Maebayashi, M. Kohno, T. Sonoda, H. Hirabayashi, Y. Nagata, N. Mitsuhashi, "Treatment outcome of medium-dose-rate intracavitary brachytherapy for carcinoma of the uterine cervix: comparison with low- dose-rate intracavitary brachytherapy," Int J Radiat Oncol Biol Phys 84, 137-145 (2012).

4 H.D. Kubo, G.P. Glasgow, T.D. Pethel, B.R. Thomadsen, J.F. Williamson, "High dose- rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy

Committee Task Group No. 59," Med Phys 25, 375-403 (1998).

5 B.R. Thomadsen, M.J. Rivard, W.M. Butler, AAPM, Brachytherapy Physics. (Medical Physics Publishing Corporation, 2005).

6 D.J. Brenner, E.J. Hall, "Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy," Int J Radiat Oncol Biol Phys 20, 181-190 (1991).

7 J. Valentin, "Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97," Ann ICRP 35, 1-51 (2005).

8 J. Valentin, "Annual ICRP meeting," Health Phys 86, 210 (2004).

9 E.L. Seymour, S.J. Downes, G.B. Fogarty, M.A. Izard, P. Metcalfe, "In vivo real-time dosimetric verification in high dose rate prostate brachytherapy," Med Phys 38, 4785- 4794 (2011).

10 L. Ludemann, C. Wybranski, M. Seidensticker, K. Mohnike, S. Kropf, P. Wust, J. Ricke, "In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy," Radiat Oncol 6, 107 (2011).

11 N. Sahoo, "Measurement of transit time of a remote after-loading high dose rate brachytherapy source," Med Phys 28, 1786-1790 (2001).

12 A.S. Beddar, R. Mackie, F.H. Attix, "Water-equivalent plastic scintillation detector for high energy beam dosimetry: I. Physical characteristics and theoretical

considerations.," Phys Med Biol 37, 1883-1900 (1992).

13 A.S. Beddar, T. Mackie, F.H. Attix, "Water-equivalent plastic scintillation detector for high-energy beam dosimetry: II. Properties and measurements. ," Phys Med Biol 37, 1901-1913 (1992).

14 G.M. Daskalov, E. Loffler, J.F. Williamson, "Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source.," Med Phys 25, 2200-2208 (1998).

15 M. Westermark, J. Arndt, B. Nilsson, A. Brahme, "Comparative dosimetry in narrow high-energy photon beams," Phys Med Biol 45, 685-702 (2000).

16 J. Lambert, T. Nakano, S. Law, J. Elsey, D.R. McKenzie, N. Suchowerska, "In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector," Med Phys 34, 1759-1765 (2007).

127 17 A. Kirov, J.F. Williamson, A.S. Meigooni, Y. Zhu, "TLD, diode and Monte Carlo

dosimetry of an 192Ir source for high dose-rate brachytherapy," Phys Med Biol 40, 2015-2036 (1995).

18 P.A. Jursinic, C.J. Yahnke, "In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material," Med Phys 38, 5432-5440 (2011).

19 P. Karaiskos, A. Angelopoulos, L. Sakelliou, P. Sandilos, C. Antypas, L. Vlachos, E. Koutsouveli, "Monte Carlo and TLD dosimetry of an 192Ir high dose-rate

brachytherapy source," Med Phys 25, 1975-1984 (1998).

20 B. Mijnheer, "State of the art of in vivo dosimetry," Radiat Prot Dosimetry 131, 117- 122 (2008).

21 G. Anagnostopoulos, D. Baltas, A. Geretschlaeger, T. Martin, P. Papagiannis, N. Tselis, N. Zamboglou, "In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer," Int J Radiat Oncol Biol Phys 57, 1183-1191 (2003). 22 I.A. Brezovich, J. Duan, P.N. Pareek, J. Fiveash, M. Ezekiel, "In vivo urethral dose

measurements: a method to verify high dose rate prostate treatments," Med Phys 27, 2297-2301 (2000).

23 R. Das, W. Toye, T. Kron, S. Williams, G. Duchesne, "Thermoluminescence dosimetry for in-vivo verification of high dose rate brachytherapy for prostate cancer," Australas Phys Eng Sci Med 30, 178-184 (2007).

24 G. Gambarini, M. Borroni, S. Grisotto, A. Maucione, A. Cerrotta, C. Fallai, M.

Carrara, "Solid state TL detectors for in vivo dosimetry in brachytherapy," Appl Radiat Isot2012).

25 A.S. Meigooni, J.A. Meli, R. Nath, "Influence of the variation of energy spectra with depth in the dosimetry of 192Ir using LiF TLD," Phys Med Biol 33, 1159-1170 (1988). 26 F. Perera, F. Chisela, L. Stitt, J. Engel, V. Venkatesan, "TLD skin dose measurements

and acute and late effects after lumpectomy and high-dose-rate brachytherapy only for early breast cancer," Int J Radiat Oncol Biol Phys 62, 1283-1290 (2005).

27 W. Toye, R. Das, T. Kron, R. Franich, P. Johnston, G. Duchesne, "An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry," Radiother Oncol 91, 243-248 (2009).

28 J.M. Fagerstrom, J.A. Micka, L.A. DeWerd, "Response of an implantable MOSFET dosimeter to 192Ir HDR radiation," Med Phys 35, 5729-5737 (2008).

29 A. Haughey, G. Coalter, K. Mugabe, "Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in HDR brachytherapy," Australas Phys Eng Sci Med 34, 361-366 (2011).

30 R.A. Kinhikar, P.K. Sharma, C.M. Tambe, D.D. Deshpande, "Dosimetric evaluation of a new OneDose MOSFET for Ir-192 energy," Phys Med Biol 51, 1261-1268 (2006). 31 R.A. Kinhikar, P.K. Sharma, C.M. Tambe, U.M. Mahantshetty, R. Sarin, D.D.

Deshpande, S.K. Shrivastava, "Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast," Phys Med Biol 51, N263-268 (2006). 32 Z.Y. Qi, X.W. Deng, S.M. Huang, J. Lu, M. Lerch, D. Cutajar, A. Rosenfeld,

"Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide- semiconductor field effect transistor detectors," Med Phys 34, 2007-2013 (2007).

33 B. Reniers, G. Landry, R. Eichner, A. Hallil, F. Verhaegen, "In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: feasibility study," Med Phys 39, 1925-1935 (2012).

34 V.O. Zilio, O.P. Joneja, Y. Popowski, A. Rosenfeld, R. Chawla, "Absolute depth-dose- rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors," Med Phys 33, 1532-1539 (2006).

35 Best Medical Canada, "Dynamic Dose Measurements for Brachytherapy Dosimetry," (Best Medical Canada,

http://www.bestmedicalcanada.com/MOS_PDFs/linear_5ive_array.pdf).

36 E.J. Bloemen-van Gurp, B.K. Haanstra, L.H. Murrer, F.C. van Gils, A.L. Dekker, B.J. Mijnheer, P. Lambin, "In vivo dosimetry with a linear MOSFET array to evaluate the urethra dose during permanent implant brachytherapy using iodine-125," Int J Radiat Oncol Biol Phys 75, 1266-1272 (2009).

37 A. Cherpak, W. Ding, A. Hallil, J.E. Cygler, "Evaluation of a novel 4D in vivo dosimetry system," Med Phys 36, 1672-1679 (2009).

38 C. Waldhausl, A. Wambersie, R. Potter, D. Georg, "In-vivo dosimetry for

gynaecological brachytherapy: physical and clinical considerations," Radiother Oncol

77, 310-317 (2005).

39 D. Wilkins, X.A. Li, J. Cygler, L. Gerig, "The effect of dose rate dependence of p-type silicon detectors on linac relative dosimetry," Med Phys 24, 879-881 (1997).

40 C.E. Andersen, S.K. Nielsen, S. Greilich, J. Helt-Hansen, J.C. Lindegaard, K. Tanderup, "Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy," Med Phys 36, 708-718 (2009).

41 C.E. Andersen, S.K. Nielsen, J.C. Lindegaard, K. Tanderup, "Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy," Med Phys 36, 5033-5043 (2009).

42 S.W. McKeever, M.W. Blair, E. Bulur, R. Gaza, R. Kalchgruber, D.M. Klein, E.G. Yukihara, "Recent advances in dosimetry using the optically stimulated luminescence of Al2O3:C," Radiat Prot Dosimetry 109, 269-276 (2004).

43 S.W. McKeever, M. Moscovitch, "On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry," Radiat Prot Dosimetry 104, 263-270 (2003).

44 E.G. Yukihara, S.W. McKeever, "Optically stimulated luminescence (OSL) dosimetry in medicine," Phys Med Biol 53, R351-379 (2008).

45 G. Kertzscher, C.E. Andersen, F.A. Siebert, S.K. Nielsen, J.C. Lindegaard, K. Tanderup, "Identifying afterloading PDR and HDR brachytherapy errors using real- time fiber-coupled Al(2)O(3):C dosimetry and a novel statistical error decision criterion," Radiother Oncol 100, 456-462 (2011).

46 C.J. Marckmann, C.E. Andersen, M.C. Aznar, L. Botter-Jensen, "Optical fibre

dosemeter systems for clinical applications based on radioluminescence and optically stimulated luminescence from Al2O3:C," Radiat Prot Dosimetry 120, 28-32 (2006). 47 M.C. Aznar, C.E. Andersen, L. Botter-Jensen, S.A. Back, S. Mattsson, F. Kjaer-

Kristoffersen, J. Medin, "Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams," Phys Med Biol 49, 1655-1669 (2004).

129 48 J.M. Edmund, C.E. Andersen, C.J. Marckmann, M.C. Aznar, M.S. Akselrod, L. Botter-

Jensen, "CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters," Radiat Prot Dosimetry 119, 368-374 (2006).

49 I. Mrcela, T. Bokulic, J. Izewska, M. Budanec, A. Frobe, Z. Kusic, "Optically

stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams," Phys Med Biol 56, 6065-6082 (2011). 50 A. Viamonte, L.A. da Rosa, L.A. Buckley, A. Cherpak, J.E. Cygler, "Radiotherapy

dosimetry using a commercial OSL system," Med Phys 35, 1261-1266 (2008). 51 C.J. Tien, R. Ebeling, 3rd, J.R. Hiatt, B. Curran, E. Sternick, "Optically Stimulated

Luminescent Dosimetry for High Dose Rate Brachytherapy," Front Oncol 2, 91 (2012). 52 C.E. Andersen, C.J. Marckmann, M.C. Aznar, L. Botter-Jensen, F. Kjaer-Kristoffersen,

J. Medin, "An algorithm for real-time dosimetry in intensity-modulated radiation therapy using the radioluminescence signal from Al2O3:C," Radiat Prot Dosimetry

120, 7-13 (2006).

53 A.S. Beddar, "Plastic scintillation dosimetry and its application to radiotherapy.," Radiat Meas 41, S124-S133 (2007).

54 J.B. Birks, The theory and practice of scintillation counting. (The MacMillan Company, 1964).

55 L. Archambault, J. Arsenault, L. Gingras, A.S. Beddar, R. Roy, L. Beaulieu, "Plastic scintillation dosimetry: optimal selection of scintillating fibers and scintillators," Med Phys 32, 2271-2278 (2005).

56 A.S. Beddar, T. Mackie, F.H. Attix, "Cerenkov light generated in optical fibres and oher light pipes irradiated by electron beams," Phys Med Biol 37, 925-935 (1992). 57 F.H. Attix, Introduction to radiological physics and radiation dosimetry, 2 ed. (Wiley-

VCH, 2004).

58 Saint-Gobain Crystals, "Scintillation products," (2011).

59 J.V. Jelley, "Cerenkov radiation and its applications," Br J Appl Phys 6, 227 (1955). 60 L. Archambault, A.S. Beddar, L. Gingras, R. Roy, L. Beaulieu, "Measurement

accuracy and cerenkov removal for high performance, high spatial resolution scintillation dosimetry," Med Phys 33, 128-135 (2006).

61 M.A. Clift, P. Johnston, D.V. Webb, "A temporal method of avoiding the Cerenkov radiation generated in organic scintillator dosimeters by pulsed megavoltage electron and photon beams.," Phys Med Biol 47, 1421-1433 (2002).

62 M.A. Clift, R.A. Sutton, D.V. Webb, "Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams," Phys Med Biol 45, 1165- 1182 (2000).

63 J.M. Fontbonne, G. Iltis, G. Ban, I. Battala, J.C. Vernhes, J. Tillier, N. Bellaize, C. LeBrun, B. Taiman, K. Mercier, J.C. Motin, "Scintillating fiber dosimeter for radiation therapy accelerator.," IEEE Trans Nucl Sci 49, 2223-2227 (2002).

64 M. Guillot, L. Gingras, L. Archambault, S. Beddar, L. Beaulieu, "Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: a

comparison study of calibration procedures and validation in Cerenkov light- dominated situations," Med Phys 38, 2140-2150 (2011).

65 J. Lambert, Y. Yin, D.R. McKenzie, S. Law, N. Suchowerska, "Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide," Phys Med Biol 53, 3071-3080 (2008).

66 F. De Boer, A.S. Beddar, J.A. Rawlinsott, "Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry.," Phys Med Biol 38, 945- 958 (1993).

67 D. Fluhs, H. M., F. Indenkampen, C. Wieczorek, H. Kolanoski, U. Quast, "Direct reading measurement of absorbed dose with plastic scintillators. - The general concept and applications to ophtalmic plaque dosimetry.," Med Phys 23, 427-434 (1996). 68 D. Létourneau, J. Pouliot, R. Roy, "Miniature scintillating detector for small field

radiation therapy.," Med. Phys. 26, 2555-2561 (1999).

69 A.S. Beddar, S. Law, N. Suchowerska, T.R. Mackie, "Plastic scintillation dosimetry: optimization of light collection efficiency," Phys Med Biol 48, 1141-1152 (2003). 70 G. Ayotte, L. Archambault, L. Gingras, F. Lacroix, A.S. Beddar, L. Beaulieu, "Surface

preparation and coupling in plastic scintillator dosimetry," Med Phys 33, 3519-3525 (2006).

71 J. Elsey, D.R. McKenzie, J. Lambert, N. Suchowerska, S.L. Law, S.C. Fleming, "Optimal coupling of light from a cylindrical scintillator into an optical fiber," Appl Opt 46, 397-404 (2007).

72 F. Lacroix, A.S. Beddar, M. Guillot, L. Beaulieu, L. Gingras, "A design methodology using signal-to-noise ratio for plastic scintillation detectors design and performance optimization," Med Phys 36, 5214-5220 (2009).

73 F. Lacroix, L. Beaulieu, L. Archambault, A.S. Beddar, "Simulation of the precision limits of plastic scintillation detectors using optimal component selection," Med Phys

37, 412-418 (2010).

74 D.M. Klein, F. Therriault-Proulx, L. Archambault, T.M. Briere, L. Beaulieu, A.S. Beddar, "Technical note: determining regions of interest for CCD camera-based fiber optic luminescence dosimetry by examining signal-to-noise ratio," Med Phys 38, 1374- 1377 (2011).

75 L.L. Wang, S. Beddar, "Study of the response of plastic scintillation detectors in small- field 6 MV photon beams by Monte Carlo simulations," Med Phys 38, 1596-1599 (2011).

76 L. Archambault, A.S. Beddar, L. Gingras, F. Lacroix, R. Roy, L. Beaulieu, "Water- equivalent dosimeter array for small-field external beam radiotherapy," Med Phys 34, 1583-1592 (2007).

77 L. Archambault, T.M. Briere, S. Beddar, "Transient noise characterization and

filtration in CCD cameras exposed to stray radiation from a medical linear accelerator," Med Phys 35, 4342-4351 (2008).

78 F. Lacroix, L. Archambault, L. Gingras, M. Guillot, A.S. Beddar, L. Beaulieu,

"Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications," Med Phys 35, 3682-3690 (2008).

79 M. Guillot, L. Beaulieu, L. Archambault, S. Beddar, L. Gingras, "A new water- equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy," Med Phys 38, 6763-6774 (2011). 80 J.C. Gagnon, D. Theriault, M. Guillot, L. Archambault, S. Beddar, L. Gingras, L.

Beaulieu, "Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance," Med Phys 39, 429-436 (2012).

131 81 L. Archambault, T.M. Briere, F. Ponisch, L. Beaulieu, D.A. Kuban, A. Lee, S. Beddar,

"Toward a real-time in vivo dosimetry system using plastic scintillation detectors," Int J Radiat Oncol Biol Phys 78, 280-287 (2010).

82 I.J. Das, M.J. Gazda, A.S. Beddar, "Characteristics of a scintillator-based daily quality assurance device for radiation oncology beams," Med Phys 23, 2061-2067 (1996). 83 J. Lambert, D.R. McKenzie, S. Law, J. Elsey, N. Suchowerska, "A plastic scintillation

dosimeter for high dose rate brachytherapy," Phys Med Biol 51, 5505-5516 (2006). 84 R. Nowotny, "Radioluminescence of some optical fibers.," Phys Med Biol 52, N67-

N73 (2007).

85 L. Archambault, F. Therriault-Proulx, S. Beddar, L. Beaulieu, "A mathematical

formalism for hyperspectral, multi-point, plastic scintillation detectors," Phys Med Biol

57, 7133-7145 (2012).

86 L.E. Cartwright, N. Suchowerska, Y. Yin, J. Lambert, M. Haque, D.R. McKenzie, "Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters," Med Phys 37, 2247-2255 (2010).

87 A.M. Frelin, J.M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Battala, A. Isambert, A. Vela, T. Leroux, "Spectral discrimination of Cerenkov radiation in scintillating dosimeters," Med Phys 32, 3000-3006 (2005).

88 D.M. Klein, R.C. Tailor, L. Archambault, L. Wang, F. Therriault-Proulx, A.S. Beddar, "Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors," Med Phys 37, 5541-5549 (2010). 89 S.N. Rustgi, "Application of a diamond detector to brachytherapy dosimetry," Phys

Med Biol 43, 2085-2094 (1998).

90 F. Therriault-Proulx, S. Beddar, T.M. Briere, L. Archambault, L. Beaulieu, "Technical note: removing the stem effect when performing Ir-192 HDR brachytherapy in vivo dosimetry using plastic scintillation detectors: a relevant and necessary step," Med Phys 38, 2176-2179 (2011).

91 R. Nath, L.L. Anderson, G. Luxton, K.A. Weaver, J.F. Williamson, A.S. Meigooni, "Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine," Med Phys 22, 209-234 (1995).

92 T. Aoyama, S. Koyama, M. Tsuzaka, H. Maekoshi, "A depth-dose measuring device using a multichannel scintillating fiber array for electron beam therapy," Med Phys 24, 1235-1239 (1997).

93 A.R. Beierholm, C.E. Andersen, L.R. Lindvold, K.-K. Flemming, J. Medin, "A

comparison of BCF-12 organic scintillators and Al2O3:C crystals for real-time medical dosimetry.," Radiation Measurements 43, 898-903 (2008).

94 F. Therriault-Proulx, T.M. Briere, F. Mourtada, S. Aubin, S. Beddar, L. Beaulieu, "A phantom study of an in vivo dosimetry system using plastic scintillation detectors for real-time verification of 192Ir HDR brachytherapy," Med Phys 38, 2542-2551 (2011). 95 A.S. Beddar, F.H. Attix, T. Mackie, "On the nature of light induced by radiation in

transparent media in radiotherapy," Med Phys 16, 683 (1989).

96 C.J. Marckmann, M.C. Aznar, C.E. Andersen, L. Botter-Jensen, "Influence of the stem effect on radioluminescence signals from optical fibre Al2O3:C dosemeters," Radiat Prot Dosimetry 119, 363-367 (2006).

97 F. Therriault-Proulx, L. Archambault, L. Beaulieu, S. Beddar, "Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement.," Phys Med Biol 57, 7147-7160 (2012).

98 D.W. Rogers, "BEAMnrc website : http://irs.inms.nrc.ca/software/beamnrc/." 99 F. Lessard, L. Archambault, M. Plamondon, P. Despres, F. Therriault-Proulx, S.

Beddar, L. Beaulieu, "Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range.," Med Phys 39, 5308-5316 (2012).

100 F. Therriault-Proulx, L. Beaulieu, L. Archambault, S. Beddar, "On the nature of the light produced within optical light guides in scintillation fiber-optic dosimetry," Phys Med Biol Submitted, 0 (2012).

101 L.A. DeWerd, G.S. Ibbott, A.S. Meigooni, M.G. Mitch, M.J. Rivard, K.E. Stump, B.R. Thomadsen, J.L. Venselaar, "A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO," Med Phys 38, 782-801 (2011).

Documents relatifs