• Aucun résultat trouvé

Our study gives an opportunity to understand dormancy maintenance and breaking mechanisms.

A crucial and unanswered question is how constitutive RGL2 expression is achieved in dormant seeds. Constitutive RGL2 accumulation in dormant seeds may result from higher RGL2 protein stability or higher RGL2 specific activity to promote ABA synthesis, which in turn promotes higher RGL2 mRNA levels. The first possibility can be addressed following a HA-RGL2 protein half-life in seeds of dormant and non-dormant transgenic wild type plants (CVI or C24 ecotypes which show high levels of dormancy) expressing HA-RGL2 after translation inhibition. The half-life of RGL2 protein can be also measured in a cell-free assay. RGL2 protein (from wild type seeds, from HA-RGL2 transgenic lines or recombinant RGL2) degradation can be monitored by Western blot in extracts from dormant and non-dormant seeds in the presence or absence of GA.

Our results showed that dormant wild type seeds fail to up-regulate SLY1 mRNA accumulation upon seed imbibition, unlike non-dormant seeds. Thus, we hypothesize that constitutive RGL2 accumulation in dormant seeds might result from low expression of an important component of the DELLA degradation machinery. To check this hypothesis HA-SLY1 over-expression lines can be generated in highly dormant ecotypes (such as CVI). One could expect that forced HA-SLY1 expression to the level of non-dormant seeds will break dormancy and trigger dormant seed germination. Green Fluorescent Protein (GFP) DNA sequences fused to SLY1 promoter sequences may be introduced and expressed in the dormant CVI ecotype.

Mutagenesis of such transgenic lines and screening for plants that fail to up-regulate promSLY1::GFP after stratification may lead to the discovery of factors important for dormancy alleviation. Moreover, a careful analysis of SLY1 and RGL2 expression in various mutants shown to be affected in dormancy maintenance (dog1, hub1) may elucidate a role of positive regulators of seed dormancy reported so far.

References

Acevedo-Hernández, G.J., León, P., and Herrera-Estrella, L.R. (2005). Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. The Plant Journal 43, 506-519.

Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P., and Jullien, M. (2004). Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479-488.

Alonso-Blanco C, B.L., Hanhart CJ, Blankestijn-de Vries H, Koornneef M. (2003). Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 2, 711-729.

Anderberg R., and Walker-Simmons M. (1992). Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. PNAS 89, 10183-10187.

Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and León, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes &

Development 14, 2085-2096.

Ariizumi, T., Murase, K., Sun, T.-p., and Steber, C.M. (2008). Proteolysis-Independent Downregulation of DELLA Repression in Arabidopsis by the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 20, 2447-2459.

Ariizumi, T., Steber, C.M. (2007). Seed Germination of GA-Insensitive sleepy1 Mutants Does Not Require RGL2 Protein Disappearance in Arabidopsis. Plant Cell 19, 791-804.

Baud, S., Boutin, J.-P., Miquel, M., Lepiniec, L., and Rochat, C. (2002). An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry 40, 151-160.

Baumbusch, L.O., Hughes, D.W., Galau, G.A., and Jakobsen, K.S. (2004). LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. J. Exp.

Bot. 55, 77-87.

Belin, C., and Lopez-Molina, L. (2010). Endosperm rupture as a model for lateral root emergence in Arabidopsis? Plant Signal Behav. 5, 5.

Bensmihen, S., Giraudat, J., and Parcy, F. (2005). Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J. Exp. Bot. 56, 597-603.

Bensmihen, S., Rippa, S., Lambert, G., Jublot, D., Pautot, V., Granier, F., Giraudat, J., and Parcy, F. (2002). The Homologous ABI5 and EEL Transcription Factors Function Antagonistically to Fine-Tune Gene Expression during Late Embryogenesis. Plant Cell 14, 1391-1403.

Bentsink, L., and Koornneef, M. (2009). Seed Dormancy and Germination. In The Arabidopsis Book (The American Society of Plant Biologists), pp. 1-18.

Bentsink, L., Jowett, J., Hanhart, C.J., and Koornneef, M. (2006). Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences 103, 17042-17047.

Berger, F. (1999). Endosperm development. Current Opinion in Plant Biology 2, 28-32.

Bethke, P.C., Libourel, I.G.L., Aoyama, N., Chung, Y.-Y., Still, D.W., and Jones, R.L.

(2007). The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy. Plant Physiol. 143, 1173-1188.

Bolle, C. (2004). The role of GRAS proteins in plant signal transduction and development.

Planta 218, 683-692.

Boudart, G., Jamet, E., Rossignol, M., Lafitte, C., Borderies, G., Jauneau, A., Esquerré-Tugayé, M.-T., and Pont-Lezica, R. (2005). Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: Identification by mass spectrometry and bioinformatics.

PROTEOMICS 5, 212-221.

Bray, E.A. (1993). Molecular Responses to Water Deficit. Plant Physiol. 103, 1035-1040.

Brocard-Gifford, I., Lynch, T.J., Garcia, M.E., Malhotra, B., and Finkelstein, R.R. (2004).

The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 Locus Encodes a Novel Protein Mediating Abscisic Acid and Sugar Responses Essential for Growth. Plant Cell 16, 406-421.

Cadman, C.S.C., Toorop, P.E., Hilhorst, H.W.M., and Finch-Savage, W.E. (2006). Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. The Plant Journal 46, 805-822.

Cao, D., Hussain, A., Cheng, H., and Peng, J. (2005). Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223, 105-113.

Cao, D., Cheng, H., Wu, W., Soo, H.M., and Peng, J. (2006). Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiol. 142, 509-525.

Carles, C., Bies-Etheve, N., Aspart, L., Léon-Kloosterziel, K.M., Koornneef, M., Echeverria, M., and Delseny, M. (2002). Regulation of Arabidopsis thaliana Em genes:

role of ABI5. The Plant Journal 30, 373-383.

Carrera, E., Holman, T., Medhurst, A., Peer, W., Schmuths, H., Footitt, S., Theodoulou, F.L., and Holdsworth, M.J. (2007). Gene Expression Profiling Reveals Defined Functions of the ATP-Binding Cassette Transporter COMATOSE Late in Phase II of Germination. Plant Physiol. 143, 1669-1679.

Chiang, H.H., Hwang, I., and Goodman, H.M. (1995). Isolation of the Arabidopsis GA4 Locus. Plant Cell 7, 195-201.

Choi, H.-I., Hong, J.-H., Ha, J.-O., Kang, J.-Y., and Kim, S.Y. (2000). ABFs, a Family of ABA-responsive Element Binding Factors. Journal of Biological Chemistry 275, 1723-1730.

Cutler S, G.M., Bonetta D, Cooney S, McCourt P. (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 30; 273, 1239-1241.

de Lucas, M., Daviere, J.-M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484.

Debeaujon, I., and Koornneef, M. (2000). Gibberellin Requirement for Arabidopsis Seed Germination Is Determined Both by Testa Characteristics and Embryonic Abscisic Acid.

Plant Physiol. 122, 415-424.

Debeaujon, I., Leon-Kloosterziel, K.M., and Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiol. 122, 403-414.

Delseny, M., Bies-Etheve, N., Carles, C., Hull, G., Vicient, C., Raynal, M., Grellet, F., and Aspart, L. (2001). Late Embryogenesis Abundant (LEA) protein gene regulation during Arabidopsis seed maturation. Journal of Plant Physiology 158, 419-427.

Dill, A., Jung, H.-S., and Sun, T.-p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences of the United States of America 98, 14162-14167.

Dill, A., Thomas, S.G., Hu, J., Steber, C.M., and Sun, T.-p. (2004). The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation. Plant Cell 16, 1392-1405.

Dill, A., and Sun, T.P. (2001). Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159, 777-785.

Fankhauser, C., and Staiger, D. (2002). Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1-16.

Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schafer, E., Fu, X., Fan, L.-M., and Deng, X.W.

(2008). Coordinated regulation of Arabidopsisthaliana development by light and gibberellins. Nature 451, 475-479.

Ferrari, S., Vairo, D., Ausubel, F.M., Cervone, F., and De Lorenzo, G. (2003). Tandemly Duplicated Arabidopsis Genes That Encode Polygalacturonase-Inhibiting Proteins Are Regulated Coordinately by Different Signal Transduction Pathways in Response to Fungal Infection. Plant Cell 15, 93-106.

Ferrari, S., Galletti, R., Vairo, D., Cervone, F., and De Lorenzo, G. (2007). Antisense Expression of the Arabidopsis thaliana AtPGIP1 Gene Reduces Polygalacturonase-Inhibiting Protein Accumulation and Enhances Susceptibility to Botrytis cinerea.

Molecular Plant-Microbe Interactions 19, 931-936.

Finch-Savage, W.E., Cadman, C.S., Toorop, P.E., Lynn, J.R., and Hilhorst, H.W. (2007).

Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. The Plant Journal 51, 60-78.

Finkelstein, R., Gampala, S., Lynch, T., Thomas, T., and Rock, C. (2005). Redundant and Distinct Functions of the ABA Response Loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Molecular Biology 59, 253-267.

Finkelstein, R.R., and Lynch, T.J. (2000). The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor. Plant Cell 12, 599-610.

Finkelstein, R.R., Gampala, S.S., and Rock, C.D. (2002). Abscisic Acid Signaling in Seeds and Seedlings. Plant Cell 14, S15-45.

Finkelstein, R.R., Wang, M.L., Lynch, T.J., Rao, S., and Goodman, H.M. (1998). The Arabidopsis Abscisic Acid Response Locus ABI4 Encodes an APETALA 2 Domain Protein. Plant Cell 10, 1043-1054.

Fleet C., Yamaguchi S., Hanada A., Kawaide H., David C., KamiyaY., and Sun T.-p.

(2003). Overexpression of AtCPS but not AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol., 830-839.

Fu, X., Richards, D.E., Fleck, B., Xie, D., Burton, N., and Harberd, N.P. (2004). The Arabidopsis Mutant sleepy1gar2-1 Protein Promotes Plant Growth by Increasing the Affinity of the SCFSLY1 E3 Ubiquitin Ligase for DELLA Protein Substrates. Plant Cell 16, 1406-1418.

Fujii, H., Verslues, P.E., and Zhu, J.-K. (2007). Identification of Two Protein Kinases Required for Abscisic Acid Regulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis. Plant Cell 19, 485-494.

Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664.

Gao, Y., Zeng, Q., Guo, J., Cheng, J., Ellis, B.E., and Chen, J.-G. (2007). Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. The Plant Journal 52, 1001-1013.

Garcia, M., Lynch, T., Peeters, J., Snowden, C., and Finkelstein, R. (2008). A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Molecular Biology 67, 643-658.

Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992).

Isolation of the Arabidopsis ABI3 Gene by Positional Cloning. Plant Cell 4, 1251-1261.

Goldberg, R.B., de Paiva, G., and Yadegari, R. (1994). Plant Embryogenesis: Zygote to Seed.

Science 266, 605-614.

Gomi, K., Sasaki, A., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., Kitano, H., and Matsuoka, M. (2004). GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. The Plant Journal 37, 626-634.

Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodriguez, P.L. (2002). The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde.

Plant Cell 14, 1833-1846.

Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A.R., Vartanian, N., and Giraudat, J. (1999).

ABI1 Protein Phosphatase 2C Is a Negative Regulator of Abscisic Acid Signaling. Plant Cell 11, 1897-1910.

Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S.J., Gong, F., Phillips, A.L., Hedden, P., Sun, T.-p., and Thomas, S.G. (2006). Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. Plant Cell 18, 3399-3414.

Guerche, P., Tire, C., de Sa, F.G., De Clercq, A., Van Montagu, M., and Krebbers, E.

(1990). Differential Expression of the Arabidopsis 2S Albumin Genes and the Effect of Increasing Gene Family Size. Plant Cell 2, 469-478.

Guo, J., Zeng, Q., Emami, M., Ellis, B.E., and Chen, J.-G. (2008). The GCR2 Gene Family Is Not Required for ABA Control of Seed Germination and Early Seedling Development in Arabidopsis. PLoS ONE 3, e2982.

Haughn, G., and Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science 10, 472-477.

Helliwell, C., Chandler P., Poole A., Olive M., Dennis E., and Peacock W. (2001b). The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyses three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98, 2065-2070.

Helliwell, C.A., Sheldon, C.C., Olive, M.R., Walker, A.R., Zeevaart, J.A., Peacock, W.J., and Dennis, E.S. (1998). Cloning of the Arabidopsis ent-kaurene oxidase gene GA3.

Proc Natl Acad Sci U S A 95, 9019-9024.

Helliwell, C.A., Sullivan J., Mould R., Gray J., Peacock J., and Dennis E. (2001a). A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastidand endoplasmic reticulum stepsof the gibberellin biosynthesis pathway. Plant J., 201-208.

Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 33-54.

Holman, T.J., Jones, P.D., Russell, L., Medhurst, A., Úbeda Tomás, S., Talloji, P., Marquez, J., Schmuths, H., Tung, S.-A., Taylor, I., Footitt, S., Bachmair, A., Theodoulou, F.L., and Holdsworth, M.J. (2009). The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis.

Proceedings of the National Academy of Sciences 106, 4549-4554.

Hugouvieux, V., Kwak, J.M., and Schroeder, J.I. (2001). An mRNA Cap Binding Protein, ABH1, Modulates Early Abscisic Acid Signal Transduction in Arabidopsis 106, 477-487.

Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., and Smeekens, S. (2000). The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. The Plant Journal 23, 577-585.

Hussain, A., Cao, D., Cheng, H., Wen, Z., and Peng, J. (2005). Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. The Plant Journal 44, 88-99.

Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R., and Jamet, E. (2008). A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers. BMC Plant Biology 8, 94.

Itoh, H., Sasaki, A., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Hasegawa, Y., Minami, E., Ashikari, M., and Matsuoka, M. (2005). Dissection of the Phosphorylation of Rice DELLA Protein, SLENDER RICE1. Plant Cell Physiol. 46, 1392-1399.

Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27, 325-333.

Iuchi, S., Suzuki, H., Kim, Y.-C., Iuchi, A., Kuromori, T., Ueguchi-Tanaka, M., Asami, T., Yamaguchi, I., Matsuoka, M., Kobayashi, M., and Nakajima, M. (2007). Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. The Plant Journal 50, 958-966.

Jacobsen, S.E., and Olszewski, N.E. (1993). Mutations at the SPINDLY Locus of Arabidopsis Alter Gibberellin Signal Transduction. Plant Cell 5, 887-896.

Jacobsen, S.E., Binkowski K.A., Olszewski, N.E. (1996). SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci U S A 93, 9292-9296.

Johnston, C.A., Temple, B.R., Chen, J.-G., Gao, Y., Moriyama, E.N., Jones, A.M., Siderovski, D.P., and Willard, F.S. (2007). Comment on "A G Protein Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid". Science 318, 914c-.

Kamiya, Y., Sun, T.-p. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthase A of gibberellin biosynthesis. The Plant Cell 6, 1509-1518.

Kanai, M., Nishimura, M., and Hayashi, M. (2010). A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. The Plant Journal 62, 936-947.

Kim, D.H., Yamaguchi, S., Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y., and Choi, G.

(2008). SOMNUS, a CCCH-Type Zinc Finger Protein in Arabidopsis, Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5. Plant Cell 20, 1260-1277.

Kinoshita, N., Berr, A., Belin, C., Chappuis, R., Nishizawa, N.K., and Lopez-Molina, L.

(2010). Identification of growth insensitive to ABA3 (gia3), a Recessive Mutation Affecting ABA Signaling for the Control of Early Post-Germination Growth in Arabidopsis thaliana. Plant Cell Physiol. 51, 239-251.

Klein, R.D., Gu, Q., Goddard, A., and Rosenthal, A. (1996). Selection for genes encoding secreted proteins and receptors. PNAS 93, 7108-7113.

Ko, J.-H., Yang, S.H., and Han, K.-H. (2006). Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. The Plant Journal 47, 343-355.

Koornneef, M., and Veen, J.H. (1980). Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. TAG Theoretical and Applied Genetics 58, 257-263.

Koornneef, M., Reuling, G., and Karssen, C.M. (1984). The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum 61, 377-383.

Koornneef, M., Jorna, M.L., Brinkhorst-van der Swan, D.L.C., and Karssen, C.M. (1982).

The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. TAG Theoretical and Applied Genetics 61, 385-393.

Koornneef M., van der Veen, J.H. (1980). Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.). Theor. Appl. Genet. , 257-263.

Koornneef M., Reuling G., Karssen CM. (1984). The isolation and characterization of abscisic-acid insensitive mutantsof Arabidopsis thaliana Physiol Plantarum 61, 377-383.

Koussevitzky, S., Nott, A., Mockler, T.C., Hong, F., Sachetto-Martins, G., Surpin, M., Lim, J., Mittler, R., and Chory, J. (2007). Signals from Chloroplasts Converge to Regulate Nuclear Gene Expression. Science 316, 715-719.

Kroj, T., Savino, G., Valon, C., Giraudat, J., and Parcy, F. (2003). Regulation of storage protein gene expression in Arabidopsis. Development 130, 6065-6073.

Kucera B, Cohn M., Leubner-Metzger G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281-307.

Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., and Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J 23, 1647-1656.

Lai, C.-P., Lee, C.-L., Chen, P.-H., Wu, S.-H., Yang, C.-C., and Shaw, J.-F. (2004).

Molecular Analyses of the Arabidopsis TUBBY-Like Protein Gene Family. Plant Physiol. 134, 1586-1597.

Lee, K.H., Piao, H.L., Kim, H.-Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.-J., and Hwang, I. (2006). Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid 126, 1109-1120.

Lee, S., Cheng, H., King, K.E., Wang, W., He, Y., Hussain, A., Lo, J., Harberd, N.P., and Peng, J. (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes &

Development 16, 646-658.

Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E., and Marion-Poll, A. (2006). Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal 45, 309-319.

Leon-Kloosterziel K., van de Bunt G., Zeevaart J., and Koornneef M. (1996). Arabidopsis mutants with a reduced seed dormancy. Plant Physiol., 233-240.

Léon-Kloosterziel, K.M., Gil, M.A., Ruijs, G.J., Jacobsen, S.E., Olszewski, N.E., Schwartz, S.H., Zeevaart, J.A.D., and Koornneef, M. (1996). Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal 10, 655-661.

Leubner-Metzger, G. (2003). Functions and regulation of beta-1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Science Research 13, 17-34.

Leubner-Metzger, G. (2005). β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. The Plant Journal 41, 133-145.

Leubner-Metzger, G., Frundt, C., Vogeli-Lange, R., and Meins Jr, F. (1995). Class I [beta]-1,3-Glucanases in the Endosperm of Tobacco during Germination. Plant Physiol. 109, 751-759.

Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 Genes Encode Homologous Protein Phosphatases 2C Involved in Abscisic Acid Signal Transduction. Plant Cell 9, 759-771.

Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.-H., and Ma, L. (2007a). A G Protein-Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid. Science 315, 1712-1716.

Liu, Y., Koornneef, M., and Soppe, W.J.J. (2007b). The Absence of Histone H2B Monoubiquitination in the Arabidopsis hub1 (rdo4) Mutant Reveals a Role for Chromatin Remodeling in Seed Dormancy. Plant Cell 19, 433-444.

Lopez-Molina, L., Mongrand, S., and Chua, N.-H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 98, 4782-4787.

Lopez-Molina, L., Mongrand, S., McLachlin, D.T., Chait, B.T., and Chua, N.-H. (2002).

ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant Journal 32, 317-328.

Lopez-Molina L, and Chua N.-H. (2000). A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. 5, 541-547.

Lotan, T., Ohto, M.-a., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (1998). Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells. Cell 93, 1195-1205.

Luerßen, H., Kirik, V., Herrmann, P., and Miséra, S. (1998). FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. The Plant Journal 15, 755-764.

Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E.

(2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors.

Science 324, 1064-1068.

Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., and Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15, 2331-2342.

Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.-P., Kamiya, Y., Nambara, E., and Truong, H.-N. (2009). The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy. Plant Physiol. 149, 949-960.

Mayer, U., Ruiz, R.A.T., Berleth, T., Miseera, S., and Juurgens, G. (1991). Mutations affecting body organization in the Arabidopsis embryo. Nature 353, 402-407.

McCarty, D.R., Carson, C.B., Stinard, P.S., and Robertson, D.S. (1989). Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell 1, 523-532.

McCourt, P., and Creelman, R. (2008). The ABA receptors - we report you decide. Current Opinion in Plant Biology 11, 474-478.

Merlot, S., Mustilli, A.-C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A., and Giraudat, J. (2002). Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. The Plant Journal 30, 601-609.

Mitchum, M.G., Yamaguchi, S., Hanada, A., Kuwahara, A., Yoshioka, Y., Kato, T., Tabata, S., Kamiya, Y., and Sun, T.-p. (2006). Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. The Plant Journal 45, 804-818.

Mochizuki, N., Brusslan, J.A., Larkin, R., Nagatani, A., and Chory, J. (2001). Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proceedings of the National Academy of Sciences of the United States of America 98, 2053-2058.

Muller, A.H., and Hansson, M. (2009). The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor. Plant Physiol. 150, 157-166.

Muller, K., Tintelnot, S., and Leubner-Metzger, G. (2006). Endosperm-limited Brassicaceae

Muller, K., Tintelnot, S., and Leubner-Metzger, G. (2006). Endosperm-limited Brassicaceae