• Aucun résultat trouvé

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF

(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Ma-jor contributors of computing resources are listed in ref. [97].

Open Access.

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] Yu. A. Golfand and E.P. Likhtman,Extension of the algebra of Poincar´e group generators and violation ofpinvariance,JETP Lett.13(1971) 323 [Pisma Zh. Eksp. Teor. Fiz.13 (1971) 452] [INSPIRE].

[2] D.V. Volkov and V.P. Akulov,Is the neutrino a Goldstone particle?,Phys. Lett.46B(1973) 109[INSPIRE].

JHEP09(2017)084

[3] J. Wess and B. Zumino,Supergauge transformations in four-dimensions,Nucl. Phys.B 70 (1974) 39[INSPIRE].

[4] J. Wess and B. Zumino,Supergauge invariant extension of quantum electrodynamics,Nucl.

Phys.B 78(1974) 1[INSPIRE].

[5] S. Ferrara and B. Zumino,Supergauge invariant Yang-Mills theories,Nucl. Phys.B 79 (1974) 413[INSPIRE].

[6] A. Salam and J.A. Strathdee,Supersymmetry and non-Abelian gauges,Phys. Lett.51B (1974) 353[INSPIRE].

[7] S.P. Martin,A supersymmetry primer,Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].

[8] P. Fayet,Supersymmetry and weak, electromagnetic and strong interactions,Phys. Lett.64B (1976) 159[INSPIRE].

[9] P. Fayet,Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions,Phys. Lett.69B (1977) 489[INSPIRE].

[10] G.R. Farrar and P. Fayet,Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry,Phys. Lett.76B(1978) 575[INSPIRE].

[11] H. Goldberg,Constraint on the photino mass from cosmology,Phys. Rev. Lett.50(1983) 1419[Erratum ibid.103(2009) 099905] [INSPIRE].

[12] J.R. Ellis et al.,Supersymmetric relics from the Big Bang,Nucl. Phys.B 238(1984) 453 [INSPIRE].

[13] N. Sakai, Naturalness in supersymmetric GUTS,Z. Phys.C 11(1981) 153[INSPIRE].

[14] S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification,Phys.

Rev.D 24(1981) 1681 [INSPIRE].

[15] L.E. Ib´a˜nez and G.G. Ross,Low-energy predictions in supersymmetric grand unified theories, Phys. Lett.105B(1981) 439[INSPIRE].

[16] S. Dimopoulos and H. Georgi,Softly broken supersymmetry and SU(5),Nucl. Phys. B 193 (1981) 150[INSPIRE].

[17] R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses,Nucl. Phys.

B 306(1988) 63 [INSPIRE].

[18] B. de Carlos and J.A. Casas,One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem,Phys. Lett.B 309(1993) 320[hep-ph/9303291]

[INSPIRE].

[19] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita,Aspects of grand unified models with softly broken supersymmetry,Prog. Theor. Phys.68(1982) 927[Erratum ibid.70(1983) 330]

[INSPIRE].

[20] J.R. Ellis and S. Rudaz,Search for supersymmetry in toponium decays, Phys. Lett.128B (1983) 248[INSPIRE].

[21] C. Borschensky et al., Squark and gluino production cross sections in pp collisions at

√s= 13,14,33and100TeV,Eur. Phys. J.C 74(2014) 3174[arXiv:1407.5066] [INSPIRE].

[22] ATLAScollaboration,The ATLAS experiment at the CERN Large Hadron Collider,2008 JINST 3S08003[INSPIRE].

JHEP09(2017)084

[23] ATLAScollaboration,Search for supersymmetry at√

s= 13TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector,Eur. Phys. J.C 76 (2016) 259[arXiv:1602.09058] [INSPIRE].

[24] CMScollaboration, Search for new physics in same-sign dilepton events in proton–proton collisions at √

s= 13TeV,Eur. Phys. J.C 76(2016) 439[arXiv:1605.03171] [INSPIRE].

[25] CMScollaboration,Search for supersymmetry with multiple charged leptons in proton-proton collisions at √

s= 13TeV,arXiv:1701.06940[INSPIRE].

[26] CMScollaboration, Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum and jets in proton–proton collisions at

√s= 13TeV,Eur. Phys. J.C 77(2017) 578[arXiv:1704.07323] [INSPIRE].

[27] J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker,Searching for directly decaying gluinos at the Tevatron,Phys. Lett.B 666(2008) 34[arXiv:0803.0019] [INSPIRE].

[28] J. Alwall, P. Schuster and N. Toro,Simplified models for a first characterization of new physics at the LHC,Phys. Rev. D 79(2009) 075020[arXiv:0810.3921] [INSPIRE].

[29] LHC New Physics Working Groupcollaboration, D. Alves, Simplified models for LHC new physics searches,J. Phys.G 39 (2012) 105005[arXiv:1105.2838] [INSPIRE].

[30] P. Huang, A. Ismail, I. Low and C.E.M. Wagner,Same-sign dilepton excesses and light top squarks,Phys. Rev.D 92(2015) 075035 [arXiv:1507.01601] [INSPIRE].

[31] J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso,Exploration of the MSSM with nonuniversal Higgs masses,Nucl. Phys.B 652(2003) 259[hep-ph/0210205] [INSPIRE].

[32] J.R. Ellis, K.A. Olive and Y. Santoso,The MSSM parameter space with nonuniversal Higgs masses,Phys. Lett.B 539(2002) 107[hep-ph/0204192] [INSPIRE].

[33] E. Nikolidakis and C. Smith,Minimal flavor violation, seesaw and R-parity,Phys. Rev. D 77(2008) 015021[arXiv:0710.3129] [INSPIRE].

[34] C. Smith, Minimal flavor violation as an alternative to R-parity,arXiv:0809.3152 [INSPIRE].

[35] C. Cs´aki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation,Phys. Rev.D 85 (2012) 095009[arXiv:1111.1239] [INSPIRE].

[36] G. Durieux and C. Smith,The same-sign top signature of R-parity violation,JHEP 10 (2013) 068[arXiv:1307.1355] [INSPIRE].

[37] J. Berger, M. Perelstein, M. Saelim and P. Tanedo,The same-sign dilepton signature of RPV/MFV SUSY,JHEP 04(2013) 077[arXiv:1302.2146] [INSPIRE].

[38] ATLAS collaboration, ATLAS insertable B-layer technical design report,ATLAS-TDR-19 (2010), addendumATLAS-TDR-19-ADD-1 (2012).

[39] ATLAScollaboration,Performance of the ATLAS trigger system in 2015,Eur. Phys. J.C 77(2017) 317[arXiv:1611.09661] [INSPIRE].

[40] ATLAScollaboration,Luminosity determination inpp collisions at √

s= 8 TeV using the ATLAS detector at the LHC,Eur. Phys. J.C 76(2016) 653[arXiv:1608.03953] [INSPIRE].

[41] ATLAScollaboration,The ATLAS simulation infrastructure,Eur. Phys. J.C 70(2010) 823 [arXiv:1005.4568] [INSPIRE].

JHEP09(2017)084

[42] GEANT4collaboration, S. Agostinelli et al.,GEANT4: a simulation toolkit,Nucl. Instrum.

Meth.A 506 (2003) 250[INSPIRE].

[43] ATLAS collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim,ATL-PHYS-PUB-2010-013(2010).

[44] T. Sj¨ostrand, S. Mrenna and P.Z. Skands,A brief introduction to PYTHIA 8.1,Comput.

Phys. Commun.178(2008) 852[arXiv:0710.3820] [INSPIRE].

[45] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes,ATL-PHYS-PUB-2012-003 (2012).

[46] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63(2009) 189[arXiv:0901.0002] [INSPIRE].

[47] D.J. Lange,The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152[INSPIRE].

[48] J. Alwall et al.,The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations,JHEP 07(2014) 079[arXiv:1405.0301] [INSPIRE].

[49] R.D. Ball et al.,Parton distributions with LHC data, Nucl. Phys.B 867(2013) 244 [arXiv:1207.1303] [INSPIRE].

[50] ATLAS collaboration, ATLAS Pythia 8 tunes to7TeV data, ATL-PHYS-PUB-2014-021 (2014).

[51] G. Corcella et al.,HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes),JHEP 01(2001) 010

[hep-ph/0011363] [INSPIRE].

[52] W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas,Squark and gluino production at hadron colliders,Nucl. Phys. B 492(1997) 51 [hep-ph/9610490] [INSPIRE].

[53] A. Kulesza and L. Motyka,Threshold resummation for squark-antisquark and gluino-pair production at the LHC,Phys. Rev. Lett.102(2009) 111802[arXiv:0807.2405] [INSPIRE].

[54] A. Kulesza and L. Motyka,Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC,Phys. Rev. D 80(2009) 095004[arXiv:0905.4749]

[INSPIRE].

[55] W. Beenakker et al.,Soft-gluon resummation for squark and gluino hadroproduction,JHEP 12(2009) 041[arXiv:0909.4418] [INSPIRE].

[56] W. Beenakker et al.,Squark and gluino hadroproduction, Int. J. Mod. Phys.A 26(2011) 2637[arXiv:1105.1110] [INSPIRE].

[57] M. Kr¨amer et al.,Supersymmetry production cross sections inpp collisions at √

s= 7 TeV, arXiv:1206.2892[INSPIRE].

[58] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis,JHEP 07(2002) 012[hep-ph/0201195] [INSPIRE].

[59] S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++,Eur. Phys. J.C 72(2012) 2225[arXiv:1206.0041] [INSPIRE].

[60] D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector,arXiv:1610.07922[INSPIRE].

JHEP09(2017)084

[61] T. Gleisberg et al.,Event generation with SHERPA 1.1,JHEP 02(2009) 007 [arXiv:0811.4622] [INSPIRE].

[62] ATLAS collaboration, Multi-boson simulation for13TeV ATLAS analyses, ATL-PHYS-PUB-2016-002(2016).

[63] H.-L. Lai et al.,New parton distributions for collider physics,Phys. Rev.D 82(2010) 074024 [arXiv:1007.2241] [INSPIRE].

[64] S. Dittmaier et al.,Handbook of LHC Higgs cross sections: 2. differential distributions, arXiv:1201.3084[INSPIRE].

[65] L. L¨onnblad and S. Prestel,Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019[arXiv:1109.4829] [INSPIRE].

[66] W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD,hep-ph/9611232[INSPIRE].

[67] ATLAS collaboration, Modelling of thet¯tH andttV¯ (V =W, Z)processes for √

s= 13TeV ATLAS analyses, ATL-PHYS-PUB-2016-005(2016).

[68] S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons,JHEP 06(2015) 184

[arXiv:1504.03446] [INSPIRE].

[69] ATLAS collaboration, Vertex reconstruction performance of the ATLAS detector at

√s= 13TeV,ATL-PHYS-PUB-2015-026(2015).

[70] ATLAS collaboration, Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data,ATLAS-CONF-2016-024(2016).

[71] ATLAScollaboration,Muon reconstruction performance of the ATLAS detector in proton–proton collision data at√

s= 13TeV, Eur. Phys. J.C 76 (2016) 292 [arXiv:1603.05598] [INSPIRE].

[72] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm,JHEP 04(2008) 063[arXiv:0802.1189] [INSPIRE].

[73] ATLAScollaboration,Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,Eur. Phys. J.C 77(2017) 490[arXiv:1603.02934] [INSPIRE].

[74] M. Cacciari and G.P. Salam,Pileup subtraction using jet areas,Phys. Lett.B 659(2008) 119 [arXiv:0707.1378] [INSPIRE].

[75] ATLAScollaboration,Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at√

s= 13 TeV with the ATLAS detector,arXiv:1703.09665 [INSPIRE].

[76] ATLAS collaboration, Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018(2014).

[77] ATLAScollaboration,Performance ofb-jet identification in the ATLAS experiment,2016 JINST 11 P04008[arXiv:1512.01094] [INSPIRE].

[78] ATLAS collaboration, Expected performance of the ATLASb-tagging algorithms in Run-2, ATL-PHYS-PUB-2015-022(2015).

[79] ATLAS collaboration, Optimisation of the ATLASb-tagging performance for the 2016 LHC Run,ATL-PHYS-PUB-2016-012(2016).

JHEP09(2017)084

[80] ATLAScollaboration,Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data, Eur. Phys. J.C 77 (2017) 195[arXiv:1612.01456]

[INSPIRE].

[81] ATLAScollaboration,Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data,Eur. Phys. J.C 76 (2016) 666[arXiv:1606.01813]

[INSPIRE].

[82] ATLAS collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector in the first proton-proton collisions at√

s= 13TeV, ATL-PHYS-PUB-2015-027(2015).

[83] ATLAS collaboration, Expected performance of missing transverse momentum reconstruction for the ATLAS detector at√

s= 13TeV,ATL-PHYS-PUB-2015-023 (2015).

[84] ATLAScollaboration,Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run,2013JINST 8P07004 [arXiv:1303.0223] [INSPIRE].

[85] ATLAS collaboration, Jet energy measurement and its systematic uncertainty in proton-proton collisions at√

s= 7TeV with the ATLAS detector,Eur. Phys. J.C 75(2015) 17[arXiv:1406.0076] [INSPIRE].

[86] ATLAScollaboration,Search for supersymmetry at√

s=8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector,JHEP 06(2014) 035 [arXiv:1404.2500] [INSPIRE].

[87] ATLAS collaboration, Search for supersymmetry using events with three leptons, multiple jets, and missing transverse momentum in13.0fb−1of ppcollisions with the ATLAS detector at√

s= 8TeV,ATLAS-CONF-2012-151(2012).

[88] P. Nason,A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040[hep-ph/0409146] [INSPIRE].

[89] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method,JHEP 11 (2007) 070[arXiv:0709.2092] [INSPIRE].

[90] S. Alioli, P. Nason, C. Oleari and E. Re,A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX,JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

[91] J.M. Campbell, R.K. Ellis, P. Nason and E. Re,Top-pair production and decay at NLO matched with parton showers,JHEP 04(2015) 114[arXiv:1412.1828] [INSPIRE].

[92] T. Sj¨ostrand, S. Mrenna and P.Z. Skands,PYTHIA 6.4 physics and manual,JHEP 05 (2006) 026[hep-ph/0603175] [INSPIRE].

[93] M. Baak et al.,HistFitter software framework for statistical data analysis,Eur. Phys. J.C 75(2015) 153[arXiv:1410.1280] [INSPIRE].

[94] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics,Eur. Phys. J.C 71 (2011) 1554[Erratum ibid. C 73(2013) 2501]

[arXiv:1007.1727] [INSPIRE].

[95] A.L. Read,Presentation of search results: the CL(s) technique,J. Phys. G 28(2002) 2693 [INSPIRE].

JHEP09(2017)084

[96] ATLAScollaboration,Search for new phenomena in final states with large jet multiplicities and missing transverse momentum with ATLAS using√

s= 13TeV proton-proton collisions, Phys. Lett.B 757(2016) 334[arXiv:1602.06194] [INSPIRE].

[97] ATLAS collaboration, ATLAS computing acknowledgements 2016-2017, ATL-GEN-PUB-2016-002(2016).

JHEP09(2017)084

Documents relatifs