• Aucun résultat trouvé

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF

(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Ma-jor contributors of computing resources are listed in ref. [98].

Open Access.

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] Yu. A. Golfand and E.P. Likhtman,Extension of the algebra of Poincar´e group generators and violation ofpinvariance,JETP Lett.13(1971) 323 [Pisma Zh. Eksp. Teor. Fiz.13 (1971) 452] [INSPIRE].

[2] D.V. Volkov and V.P. Akulov,Is the neutrino a Goldstone particle?,Phys. Lett.46B(1973) 109[INSPIRE].

[3] J. Wess and B. Zumino,Supergauge transformations in four-dimensions,Nucl. Phys.B 70 (1974) 39[INSPIRE].

[4] J. Wess and B. Zumino,Supergauge invariant extension of quantum electrodynamics,Nucl.

Phys.B 78(1974) 1[INSPIRE].

[5] S. Ferrara and B. Zumino,Supergauge invariant Yang-Mills theories,Nucl. Phys.B 79 (1974) 413[INSPIRE].

[6] A. Salam and J.A. Strathdee,Supersymmetry and non-Abelian gauges,Phys. Lett.51B (1974) 353[INSPIRE].

[7] G.R. Farrar and P. Fayet,Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry,Phys. Lett.76B(1978) 575[INSPIRE].

[8] N. Sakai,Naturalness in supersymmetric GUTs,Z. Phys.C 11(1981) 153[INSPIRE].

[9] S. Dimopoulos, S. Raby and F. Wilczek,Supersymmetry and the scale of unification,Phys.

Rev.D 24(1981) 1681 [INSPIRE].

JHEP08(2017)006

[10] L.E. Ib´a˜nez and G.G. Ross,Low-energy predictions in supersymmetric grand unified theories, Phys. Lett.105B(1981) 439[INSPIRE].

[11] S. Dimopoulos and H. Georgi,Softly broken supersymmetry and SU(5),Nucl. Phys. B 193 (1981) 150[INSPIRE].

[12] R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses,Nucl. Phys.

B 306(1988) 63 [INSPIRE].

[13] B. de Carlos and J.A. Casas,One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem,Phys. Lett.B 309(1993) 320[hep-ph/9303291]

[INSPIRE].

[14] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita,Aspects of grand unified models with softly broken supersymmetry,Prog. Theor. Phys.68(1982) 927[Erratum ibid.70(1983) 330]

[INSPIRE].

[15] J.R. Ellis and S. Rudaz,Search for supersymmetry in toponium decays, Phys. Lett.128B (1983) 248[INSPIRE].

[16] J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker,Searching for directly decaying gluinos at the Tevatron,Phys. Lett.B 666(2008) 34[arXiv:0803.0019] [INSPIRE].

[17] J. Alwall, P. Schuster and N. Toro,Simplified models for a first characterization of new physics at the LHC,Phys. Rev. D 79(2009) 075020[arXiv:0810.3921] [INSPIRE].

[18] LHC New Physics Working Groupcollaboration, D. Alves, Simplified models for LHC new physics searches,J. Phys.G 39 (2012) 105005[arXiv:1105.2838] [INSPIRE].

[19] ATLAScollaboration,ATLAS run1 searches for direct pair production of third-generation squarks at the Large Hadron Collider,Eur. Phys. J.C 75(2015) 510[Erratum ibid. C 76 (2016) 153] [arXiv:1506.08616] [INSPIRE].

[20] ATLAScollaboration,The ATLAS experiment at the CERN Large Hadron Collider,2008 JINST 3S08003[INSPIRE].

[21] ATLAScollaboration,Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector inpp collisions at √

s= 7TeV,Phys. Lett.

B 715(2012) 44 [arXiv:1204.6736] [INSPIRE].

[22] ATLAScollaboration,Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in√

s= 13TeVppcollisions with the ATLAS detector, Phys. Rev.D 94(2016) 052009 [arXiv:1606.03903] [INSPIRE].

[23] CMScollaboration, Search for top-squark pair production in the single-lepton final state in ppcollisions at √

s= 8TeV,Eur. Phys. J.C 73(2013) 2677 [arXiv:1308.1586] [INSPIRE].

[24] CMScollaboration, Search for supersymmetry using razor variables in events withb-tagged jets inppcollisions at √

s= 8TeV,Phys. Rev. D 91(2015) 052018[arXiv:1502.00300]

[INSPIRE].

[25] CMScollaboration, Searches for supersymmetry using theMT2 variable in hadronic events produced inppcollisions at 8TeV,JHEP 05(2015) 078[arXiv:1502.04358] [INSPIRE].

[26] CMScollaboration,Search for supersymmetry in events with soft leptons, low jet multiplicity and missing transverse energy in proton-proton collisions at √

s= 8TeV,Phys. Lett.B 759 (2016) 9[arXiv:1512.08002] [INSPIRE].

JHEP08(2017)006

[27] CMScollaboration, Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at√

s= 8TeV,JHEP 07(2016) 027[Erratum ibid.09(2016) 056] [arXiv:1602.03169] [INSPIRE].

[28] CMScollaboration, Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states inpp collisions at√

s= 8TeV, Eur. Phys. J.C 76 (2016) 460 [arXiv:1603.00765] [INSPIRE].

[29] ATLAScollaboration,Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in √

s= 8TeVppcollisions with the ATLAS detector,Eur. Phys. J.C 74(2014) 2883 [arXiv:1403.5222] [INSPIRE].

[30] CMScollaboration, Search for top-squark pairs decaying into Higgs orZ bosons in pp collisions at √

s= 8TeV, Phys. Lett.B 736(2014) 371[arXiv:1405.3886] [INSPIRE].

[31] ATLAScollaboration,ATLAS insertable B-layer technical design report, CERN-LHCC-2010-013, CERN, Geneva Switzerland, (2010).

[32] ATLAScollaboration,Performance of the ATLAS trigger system in2015,Eur. Phys. J.C 77(2017) 317[arXiv:1611.09661] [INSPIRE].

[33] ATLAScollaboration,Improved luminosity determination inpp collisions at √

s= 7TeV using the ATLAS detector at the LHC,Eur. Phys. J.C 73 (2013) 2518[arXiv:1302.4393]

[INSPIRE].

[34] ATLAScollaboration,Simulation of top quark production for the ATLAS experiment at

√s= 13TeV,ATL-PHYS-PUB-2016-004, CERN, Geneva Switzerland, (2016).

[35] ATLAScollaboration,Monte Carlo generators for the production of aW orZ/γ boson in association with jets at ATLAS in run2,ATL-PHYS-PUB-2016-003, CERN, Geneva Switzerland, (2016).

[36] ATLAScollaboration,Multi-boson simulation for 13TeV ATLAS analyses, ATL-PHYS-PUB-2016-002, CERN, Geneva Switzerland, (2016).

[37] ATLAScollaboration,Modelling of the t¯tH andt¯tV (V =W, Z)processes for √

s= 13TeV ATLAS analyses, ATL-PHYS-PUB-2016-005, CERN, Geneva Switzerland, (2016).

[38] D.J. Lange,The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152[INSPIRE].

[39] J. Alwall et al.,The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations,JHEP 07(2014) 079[arXiv:1405.0301] [INSPIRE].

[40] T. Sj¨ostrand, S. Mrenna and P.Z. Skands,A brief introduction to PYTHIA8.1,Comput.

Phys. Commun.178(2008) 852[arXiv:0710.3820] [INSPIRE].

[41] W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas,Squark and gluino production at hadron colliders,Nucl. Phys. B 492(1997) 51 [hep-ph/9610490] [INSPIRE].

[42] A. Kulesza and L. Motyka,Threshold resummation for squark-antisquark and gluino-pair production at the LHC,Phys. Rev. Lett.102(2009) 111802[arXiv:0807.2405] [INSPIRE].

[43] A. Kulesza and L. Motyka,Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC,Phys. Rev. D 80(2009) 095004[arXiv:0905.4749]

[INSPIRE].

JHEP08(2017)006

[44] W. Beenakker, S. Brensing, M. Kr¨amer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction,JHEP 12(2009) 041

[arXiv:0909.4418] [INSPIRE].

[45] W. Beenakker et al.,Squark and gluino hadroproduction, Int. J. Mod. Phys.A 26(2011) 2637[arXiv:1105.1110] [INSPIRE].

[46] H.-L. Lai et al.,New parton distributions for collider physics,Phys. Rev.D 82(2010) 074024 [arXiv:1007.2241] [INSPIRE].

[47] ATLAScollaboration,ATLAS run1 PYTHIA8 tunes,ATL-PHYS-PUB-2014-021, CERN, Geneva Switzerland, (2014).

[48] T. Gleisberg et al.,Event generation with SHERPA1.1,JHEP 02(2009) 007 [arXiv:0811.4622] [INSPIRE].

[49] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO,Phys. Rev. Lett.103(2009) 082001[arXiv:0903.2120] [INSPIRE].

[50] S. Alioli, P. Nason, C. Oleari and E. Re,A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX,JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

[51] T. Sj¨ostrand, S. Mrenna and P.Z. Skands,PYTHIA6.4 physics and manual,JHEP 05 (2006) 026[hep-ph/0603175] [INSPIRE].

[52] M. Czakon, P. Fiedler and A. Mitov,Total top-quark pair-production cross section at hadron colliders throughO(αS4),Phys. Rev. Lett.110(2013) 252004[arXiv:1303.6254] [INSPIRE].

[53] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction,JHEP 01 (2013) 080[arXiv:1210.6832] [INSPIRE].

[54] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels,JHEP 12(2012) 054[arXiv:1207.0236] [INSPIRE].

[55] P. B¨arnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron:

first genuine NNLO QCD corrections toq¯q→t¯t+X,Phys. Rev. Lett.109(2012) 132001 [arXiv:1204.5201] [INSPIRE].

[56] M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation,Phys. Lett.

B 710(2012) 612[arXiv:1111.5869] [INSPIRE].

[57] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders,Comput. Phys. Commun.185(2014) 2930[arXiv:1112.5675] [INSPIRE].

[58] P.Z. Skands,Tuning Monte Carlo generators: the Perugia tunes,Phys. Rev. D 82(2010) 074018[arXiv:1005.3457] [INSPIRE].

[59] N. Kidonakis,Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev.D 83(2011) 091503 [arXiv:1103.2792] [INSPIRE].

[60] N. Kidonakis,Two-loop soft anomalous dimensions for single top quark associated production with aW orH,Phys. Rev.D 82(2010) 054018 [arXiv:1005.4451] [INSPIRE].

[61] N. Kidonakis,NNLL resummation for s-channel single top quark production, Phys. Rev.D 81(2010) 054028[arXiv:1001.5034] [INSPIRE].

JHEP08(2017)006

[62] G. Corcella et al.,HERWIG6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes),JHEP 01(2001) 010

[hep-ph/0011363] [INSPIRE].

[63] S. Dittmaier et al.,Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084[INSPIRE].

[64] L. L¨onnblad and S. Prestel,Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019[arXiv:1109.4829] [INSPIRE].

[65] W. Beenakker, M. Kr¨amer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders,Nucl. Phys. B 515(1998) 3[hep-ph/9710451] [INSPIRE].

[66] W. Beenakker, S. Brensing, M. Kr¨amer, A. Kulesza, E. Laenen and I. Niessen,

Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].

[67] C. Borschensky et al., Squark and gluino production cross sections in ppcollisions at

√s= 13,14,33 and100TeV,Eur. Phys. J.C 74(2014) 3174[arXiv:1407.5066] [INSPIRE].

[68] ATLAScollaboration,Summary of ATLAS PYTHIA8 tunes,ATL-PHYS-PUB-2012-003, CERN, Geneva Switzerland, (2012).

[69] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63(2009) 189[arXiv:0901.0002] [INSPIRE].

[70] ATLAScollaboration,The ATLAS simulation infrastructure,Eur. Phys. J.C 70(2010) 823 [arXiv:1005.4568] [INSPIRE].

[71] GEANT4collaboration, S. Agostinelli et al.,GEANT4: a simulation toolkit,Nucl. Instrum.

Meth.A 506 (2003) 250[INSPIRE].

[72] ATLAScollaboration,The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim,ATL-PHYS-PUB-2010-013, CERN, Geneva Switzerland, (2010).

[73] ATLAScollaboration,Vertex reconstruction performance of the ATLAS detector at

√s= 13TeV,ATL-PHYS-PUB-2015-026, CERN, Geneva Switzerland, (2015).

[74] ATLAScollaboration,Electron efficiency measurements with the ATLAS detector using 2012LHC proton-proton collision data, Eur. Phys. J.C 77 (2017) 195[arXiv:1612.01456]

[INSPIRE].

[75] ATLAScollaboration,Electron identification measurements in ATLAS using √

s= 13TeV data with50ns bunch spacing,ATL-PHYS-PUB-2015-041, CERN, Geneva Switzerland, (2015).

[76] ATLAScollaboration,Muon reconstruction performance of the ATLAS detector in proton-proton collision data at√

s= 13TeV,Eur. Phys. J.C 76 (2016) 292 [arXiv:1603.05598] [INSPIRE].

[77] ATLAScollaboration,Properties of jets and inputs to jet reconstruction and calibration with the ATLAS detector using proton-proton collisions at √

s= 13TeV, ATL-PHYS-PUB-2015-036, CERN, Geneva Switzerland, (2015).

[78] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm,JHEP 04(2008) 063[arXiv:0802.1189] [INSPIRE].

JHEP08(2017)006

[79] ATLAScollaboration,Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at√

s= 13TeV, ATL-PHYS-PUB-2015-015, CERN, Geneva Switzerland, (2015).

[80] ATLAScollaboration,Jet global sequential corrections with the ATLAS detector in proton-proton collisions at√

s= 8TeV,ATLAS-CONF-2015-002, CERN, Geneva Switzerland, (2015).

[81] ATLAScollaboration,Performance of pile-up mitigation techniques for jets in ppcollisions at√

s= 8TeV using the ATLAS detector,Eur. Phys. J.C 76 (2016) 581 [arXiv:1510.03823] [INSPIRE].

[82] ATLAScollaboration,Data-quality requirements and event cleaning for jets and missing transverse energy reconstruction with the ATLAS detector in proton-proton collisions at a center-of-mass energy of√

s= 7TeV,ATLAS-CONF-2010-038, CERN, Geneva Switzerland, (2010).

[83] ATLAScollaboration,Performance ofb-jet identification in the ATLAS experiment,2016 JINST 11 P04008[arXiv:1512.01094] [INSPIRE].

[84] ATLAScollaboration,Optimisation of the ATLASb-tagging performance for the 2016LHC run,ATL-PHYS-PUB-2016-012, CERN, Geneva Switzerland, (2016).

[85] ATLAScollaboration,Expected performance of missing transverse momentum reconstruction for the ATLAS detector at√

s= 13TeV,ATL-PHYS-PUB-2015-023, CERN, Geneva Switzerland, (2015).

[86] ATLAScollaboration,Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at√

s= 13TeV, ATL-PHYS-PUB-2015-027, CERN, Geneva Switzerland, (2015).

[87] M. Baak, G.J. Besjes, D. Cˆote, A. Koutsman, J. Lorenz and D. Short, HistFitter software framework for statistical data analysis,Eur. Phys. J.C 75(2015) 153[arXiv:1410.1280]

[INSPIRE].

[88] ATLAScollaboration,Measurement of the top quark-pair production cross section with ATLAS inppcollisions at √

s= 7TeV,Eur. Phys. J.C 71(2011) 1577 [arXiv:1012.1792]

[INSPIRE].

[89] ATLAScollaboration,Measurement of the top quark pair production cross section in pp collisions at √

s= 7TeV in dilepton final states with ATLAS,Phys. Lett.B 707(2012) 459 [arXiv:1108.3699] [INSPIRE].

[90] ATLAScollaboration,Search for the Standard Model Higgs boson decaying intob¯b produced in association with top quarks decaying hadronically inppcollisions at √

s= 8TeV with the ATLAS detector,JHEP 05(2016) 160[arXiv:1604.03812] [INSPIRE].

[91] ATLAScollaboration,Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at√

s= 13TeV, ATL-PHYS-PUB-2015-015, CERN, Geneva Switzerland, (2015).

[92] ATLAScollaboration,Calibration ofb-tagging using dileptonic top pair events in a combinatorial likelihood approach with the ATLAS experiment,ATLAS-CONF-2014-004, CERN, Geneva Switzerland, (2014).

[93] ATLAScollaboration,Calibration of the performance ofb-tagging for c and light-flavour jets in the2012ATLAS data,ATLAS-CONF-2014-046, CERN, Geneva Switzerland, (2014).

JHEP08(2017)006

[94] ATLAScollaboration,Multi-boson simulation for 13TeV ATLAS analyses, ATL-PHYS-PUB-2016-002, CERN, Geneva Switzerland, (2016).

[95] ATLAScollaboration,Expected performance of the ATLASb-tagging algorithms in run-2, ATL-PHYS-PUB-2015-022, CERN, Geneva Switzerland, (2015).

[96] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics,Eur. Phys. J.C 71 (2011) 1554[Erratum ibid. C 73(2013) 2501]

[arXiv:1007.1727] [INSPIRE].

[97] A.L. Read,Presentation of search results: the CLs technique,J. Phys. G 28(2002) 2693 [INSPIRE].

[98] ATLAScollaboration,ATLAS computing acknowledgements2016–2017, ATL-GEN-PUB-2016-002, CERN, Geneva Switzerland, (2016).

JHEP08(2017)006

Documents relatifs