• Aucun résultat trouvé

Courbure scalaire et quotient local : un exemple

Lemme B.2. Soient (M, g) une variété riemannnienne compacte et (Sm, h

m) la sphère standard. Sur la variété M × Smmunie de la métrique produit g × h

m, on considère le groupe

G = IM× O(r1) × O(r2),

où r1 ≥ r2et r1+r2= m+1. Alors pour tout x0= (y0, 0Rr1, z0) avec y0∈ M, et z0∈ Sr2−1, OG

x0est une orbite de dimension et de volume minimal parmi les G-orbites et le sous

groupe normal de G noté H = IM× Ir1× O(r2) permet le passage au quotient sur un

voisinage Ox0,δ= {x ∈ M×S m, d g×hm(x, O G x0)< δ} de O G x0. On noteπH: Ox0,δ→ Ox0,δ/H

la projection canonique, ˜g la métrique quotient induite par g et ¯x0= πH(OHx0). Alors

S cal˜g( ¯x0) ≥ S calg(y0) + r1(r1− 1) Démonstration du lemme : Ox0,δ= {x ∈ M × S m, d g×hm(x, O G x0)< δ} est un ouvert de M × S mcontenant l’orbite OGx0= {y0} × {0Rr1} × Sr2−1où y0∈ M. Il existe donc un ouvert O1de M contenant y0et

un ouvert O2de Smcontenant {ORr1} × Sr2−1tels que

et on a en notant H= Ir1× O(r2)

(O1× O2)/H = O1 × (O2/ H′)

avec pour métrique quotient ˜g = g × ˜hmoù ˜hmest la métrique quotient induite par hm

sur Sm/H. D’autre part comme OG x0= O H x0 ¯x0= πH(OHx0) = πH  {y0} × {0Rr1} × Sr2−1  = {y0} × p  {0r1} × S r2−1= {y 0} × {t0}

où p : Sm → Sm/Hest la projection canonique et t

0 = p  {0r1} × S r2−1 ∈ O 2/H. Ainsi,

S cal˜g( ¯x0) = S calgטhm({y0} × {t0})

= S calg(y0) + S cal˜hm(t0)

Or t0 ∈ O2/H⊂ Sm/Het d’après le lemme B.1, puisque Sm/H′est de dimension m − r2+ 1 = r1et que la courbure sectionnelle de la sphère vaut +1, on a : S cal˜hm(t0) ≥

r1(r1− 1). Ainsi :

S cal˜g( ¯x0) ≥ S calg(y0) + r1(r1− 1),

Bibliographie

[1] AUBIN T. Problèmes isopérimétriques et espaces de Sobolev, J. Differential

Geom., 11, 573-598, 1976.

[2] AUBIN T. Equations différentielles non linéaires et problème de Yamabe concer- nant la courbure scalaire, J. Math. Pures et appl., 55, 269-296, 1976.

[3] AUBIN T. Nonlinear Analysis on manifolds. Monge-Ampère equations Grund-

lehren der mathematischen Wissenschaften 252, Springer-Verlag 1982

[4] BIDAUT-VERON M.F., VERON L. Nonlinear elliptic equations on compact Rie- mannian manifolds and asymptotics of Emden equations, Invent. Math. 106, 489- 539, 1991.

[5] BREDON G.E. Introduction to compact transformation groups, Academic press,

New York-London 1972

[6] BREZIS H., LIEB E. A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc, 88, 486-490, 1983.

[7] BROUTTELANDE C. On the second best constant in logarithmic Sobolev inequa- lities on complete Riemannian manifolds, Bull. Sci. Math., 127, 292-312 (2003). [8] BROUTTELANDE C. The best-constant problem for a family of Gagliardo-

Nirenberg inequalities on a compact Riemannian manifold, Proc. Edinb. Math. Soc., II. Ser. 46, 117-146 (2003).

[9] CAFARELLI L. A., GIDAS B. et SPRUCK J. Asymptotic symmetrie and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm.

Pure Appl. Math., 42, 271-297, 1989.

[10] COLLION S. Fonctions critiques et equations aux dérivées partielles elliptiques sur les variétés riemanniennes compactes, Thèse 2004

[11] DRUET O., HEBEY E. Asymptotics for sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds. Adv. Differential Equations, 7, 1409-1478, 2002. [12] DRUET O., HEBEY E. The AB program in Geometric Analysis. Sharp Sobolev

inequalities and related problems Memoirs of the American Mathematical Society 2002

[13] DRUET O., HEBEY E., ROBERT F. Blow-up theory for elliptic PDEs in Rie- mannian geometry Mathematical Notes , Princeton University Press Volume 45. [14] DRUET O., HEBEY E., VAUGON M. Sharp Sobolev Inequalities with lower

[15] DRUET O., HEBEY E., VAUGON M. Optimal Nash’s inequalities on Rieman- nian manifolds : the influence of geometry, Internat. Math. Res. Notices,14, 735- 779, 1999.

[16] ESPOSITO P. Uniqueness and multiplicity for perturbations of the Yamabe pro- blem on Sn. Rend. Istit. Mat. Univ. Trieste, 32, 139-146, 2001.

[17] FAGET Z. Optimal constants in critical Sobolev inequalities on Riemannian ma- nifolds in the presence of symmetries Ann. Global Anal. Geom., 24, 161-200, 2003. [18] FAGET Z. Second-best constant and extremal functions in Sobolev inequalities

in the presence of symmetries, Adv. Differential Equations, 9, 745-770, 2004. [19] FAGET Z. Best constants in the exceptional case of Sobolev inequalities, Math.

Z. 252, 133-146, 2006

[20] GALLOT S., HULIN D., LAFONTAINE J. Riemannian Geometry, Third edition,

Universitext, Springer-Verlag 1993

[21] GIDAS, SPRUCK Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math. 34, 525-598 (1981).

[22] GILBART G., TRUDINGER N.S. Elliptic partial differential equations of se- cond order, Seconde édition, Grundlehren der Mathematischen Wissenschaften, 224, Springer, Berlin-New York, 1983.

[23] HEBEY E. Sharp Sobolev-Poincaré inequalities on compact riemannian mani- folds Trans. of the American Math. Soc., 354, 1193-1213, 2001.

[24] HEBEY E. Nonlinear elliptic equations of critical Sobolev growth from a dyna- mical viewpoint, Noncompact problems at the intersection of geometry, analysis,

and topology 115-125 Contemp. Math., 350, Amer. Math. Soc., Providence, RI,

2004.

[25] HEBEY E. Sharp Sobolev-Poincaré inequalities on compact Riemannian mani- folds, http ://www.u-cergy.fr/rech/pages/hebey/index.html

[26] HEBEY E. Variationnal methods and elliptic equations in Riemannian geometry

http ://www.u-cergy.fr/rech/pages/hebey/NotesVarMeth.dvi

[27] HEBEY E., ROBERT F. Coercivity and Struwe′s compactness for Paneitz typeo- perators with constant coefficients. Calc. Var. Partial Differential Equations , 13, 491-517, 2001.

[28] HEBEY E., VAUGON M. Meilleures constantes dans le théorème d’inclusion de Sobolev, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13, 57–93, 1996.

[29] HEBEY E., VAUGON M. Meilleures constantes dans le théorème d’inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe Indiana Univ.

Math. J., 41, 377-407, 1992.

[30] HEBEY E., VAUGON M. Sobolev spaces in the presence of symmetries, J. Math.

Pures Appl. , 76, 859-881, 1997.

[31] HAN Q., LIN F. Elliptic Partial Differential Equations, Courant Institute of

Mathematical Sciences, Lecture Notes in Mathematics 5, 1999. Second edition published jointly by the American Mathematical Society and the Courant Institute of Mathematical Sciences, 2000

[32] HUMBERT E. Best constants in the L2-Nash inequality Proc. Roy. Soc. Edin- burgh Sect. A , 131, no. 3, 621-646, 2001.

[33] HUMBERT E. Best constant for trace Nash inequality Nonlinear Differential

Equations Appl., 9, no. 2, 217-238, 2002

[34] OBATA M. The conjectures on conformal transformations of riemannian mani- folds J. Differential Geom., 6, 247-258, 1971.

[35] SAINTIER N. Asymptotic estimates and blow-up theory for critical equations involving the p-Laplacian, Calc. Var. Partial Differ. Equ. 25, 299-331, 2006. [36] SAINTIER N. Sur quelques problèmes non-linéaires en analyse géométrique

Thèse 2005

[37] SCHOEN R. Variational theory for the total scalar curvature functional for Rie- mannian metrics and related topics. Topics in calculus of variations, 120-154, 1987,

Lecture Notes in Math., 1365, Springer, Berlin, 1989.

[38] SOBOLEV S.L. Sur un théorème d’analyse fonctionnelle, Math. SB., 46, 471- 496, 1938.

[39] STRUWE M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities Math. Z., 187, 511-517, 1984.

[40] TALENTI G. Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372, 1976.

Documents relatifs