• Aucun résultat trouvé

7.6.1 Equation de réinitialisation

Programmer l’équation de réinitialisation (5.12) en utilisant le schéma (5.16). La tester.

7.6.2 Mouvement par courbure moyenne

Faire évoluer une courbe par mouvement par courbure moyenne (vérifier qu’elle se

trans-7.6.3 Contours actifs géodésiques

Programmer l’équation des contours actifs géodésiques (cf section 5.8). Tester cet algorithme pour segmenter des images. Regarder son comportement sur des images bruitées. Commen-taires ?

Références

[1] D. Adalsteinsson and J.A. Sethian. The fast constructions of extension velocities in level set methods. Journal of Computational Physics, 148 :2–22, 1999.

[2] G. Aubert and J.F. Aujol. Signed distance functions and viscosity solutions of disconti-nuous hamilton-jacobi equations. Technical Report 4507, INRIA, July 2002.

[3] G. Aubert and J.F. Aujol. Modeling very oscillating signals. Application to image proces-sing. Applied Mathematics and Optimization, 51(2), March/April 2005.

[4] G. Aubert and J.F. Aujol. Optimal partitions, regularized solutions, and application to image classification. Applicable Analysis, 84(1) :15–35, January 2005.

[5] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing, volume 147 of Applied Mathematical Sciences. Springer-Verlag, 2002.

[6] J.F. Aujol and G. Aubert. Signed distance functions and discontinuous Hamilton-Jacobi equations, June 2002. Workshop on Hamilton-Jacobi Equations, Cortona (Italy), TMR Viscosity Solutions and their Applications.

[7] J.F. Aujol, G. Aubert, and L. Blanc-Féraud. Wavelet-based level set evolution for classi-fication of textured images. In ICIP ’03, 2003.

[8] J.F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle. Decomposing an image : Application to SAR images. InScale-Space ’03, volume 1682 ofLecture Notes in Computer Science, 2003.

[9] J.F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle. Image decomposition into a bounded variation component and an oscillating component. JMIV, 22(1) :71–88, January 2005.

[10] J.F. Aujol, G. Aubert, and L. Blanc-Féraud. Wavelet-based level set evolution for classi-fication of textured images. IEEE Transactions on Image Processing, 12(12) :1634–1641, 2003.

[11] J.F. Aujol and A. Chambolle. Dual norms and image decomposition models. IJCV, 63(1) :85–104, June 2005.

[12] G. Barles. Solutions de Viscosité des équations de Hamilton-Jacobi. Springer-Verlag, 1987.

[13] F. Cao. Geometric curve evolution and image processing, volume 1805 of Lecture Notes in Applied Mathematics. Springer-Verlag, 2003.

[14] V. Caselles, F. Catte, T. Coll, and F. Dibos. A geometric model for active contours.

Numerische Mathematik, 66 :1–31, 1993.

[15] A. Chambolle. An algorithm for total variation minimization and applications. JMIV, 20 :89–97, 2004.

[16] A. Chambolle and P.L. Lions. Image recovery via total variation minimization and related problems. Numerische Mathematik, 76(3) :167–188, 1997.

[17] T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2) :266–77, February 2001.

[19] P.L. Combettes and J.C. Pesquet. Image restoration subject to a total variation constraint.

IEEE Transactions on Image Processing, 13, 2004.

[20] M.G. Crandall. Viscosity solutions : a primer. In Viscosity Solutions and Applications, volume 1660 of Lecture notes in Mathematics. Springer, 1997.

[21] M.G. Crandall, H. Ishii, and P.L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27(1) :1–67, july 1992.

[22] D.L. Donoho and M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.

Journal of the American Statistical Association, 90(432) :1200–1224, December 1995.

[23] I. Ekeland and R. Temam. Analyse convexe et problèmes variationnels, volume 224 of Grundlehren der mathematischen Wissenschaften. Dunod, second edition, 1983.

[24] L.C. Evans.Partial Differential Equations, volume 19 ofGraduate Studies in Mathematics.

American Mathematical Society, 1991.

[25] J. Gomes and O. Faugeras. Reconciling distance functions and level sets. Journal of Visual Communication and Image Representation, 11 :209–223, Avril 1999.

[26] F. Guichard and J.M. Morel. Image iterative smoothing and P.D.E.’s, 1999.

[27] J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis ans Minimisation Algorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1993.

[28] F. Malgouyres. Minimizing the total variation under a general convex constraint for image restoration. IEEE transactions on image processing, 11(12) :1450–1456, December 2002.

[29] R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front propagation : A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), February 1995.

[30] S.G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.

[31] Yves Meyer. Oscillating patterns in image processing and in some nonlinear evolution equations, March 2001. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures.

[32] J.M. Morel and S. Solimini. Variational Methods in Image Segmentation, volume 14 of Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, 1995.

[33] S. Osher and R.P. Fedkiw. Level set methods : An overview and some recent results.

Journal of Computational Physics, 169 :463–502, 2001.

[34] S.J. Osher, A. Sole, and L.A. Vese. Image decomposition and restoration using total variation minimization and the H1 norm. Multiscale Modeling and Simulation : A SIAM Interdisciplinary Journal, 1(3) :349–370, 2003.

[35] N. Paragios and R. Deriche. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 46(3), 2002.

[36] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE based fast local level set method. Journal of Computational Physics, 155(2), November 1998.

[37] T. Rockafellar. Convex Analysis, volume 224 ofGrundlehren der mathematischen Wissen-schaften. Princeton University Press, second edition, 1983.

[38] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM Journal of Numerical Analysis, 29(3) :867–884, 1992.

[39] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algo-rithms. Physica D, 60 :259–268, 1992.

[40] C. Samson. Contribution à la classification d’images satellitaires par approche variation-nelle et équations aux dérivées partielles. PhD thesis, Université de Nice Sophia Antipolis, September 2000.

[41] C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia. A level set method for image classification. IJCV, 40(3) :187–197, 2000.

[42] C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia. A variational model for image classification and restoration. IEEE Transactions on Pattern Analyis and Machine Intel-ligence, 22(5) :460–472, May 2000.

[43] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114 :146–159, 1994.

[44] G. Unal, A. Yezzi, and H. Krim. Information-theoretic active polygons for unsupervised texture segmentation, June 2002. preprint available upon request, submitted.

[45] L.A. Vese and T.F. Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3) :271–293, 2002.

[46] L.A. Vese and S.J. Osher. Modeling textures with total variation minimization and oscil-lating patterns in image processing. Journal of Scientific Computing, 19 :553–572, 2003.

Documents relatifs