• Aucun résultat trouvé

Chapitre 2. État de la question

2.4. Constats et conclusions de la revue de la littérature

Pour tous les adsorbants analysés, la température et la pression ont un rôle principal sur le processus d'adsorption. Ainsi, pour les zéolithes [28], les matériaux carbonés [26], les MOF [26, 38] et les POP [26, 51], la capacité d'adsorption de CH4 diminue lorsque la

température augmente et que la pression diminue. Cela s’explique par le fait que les interactions entre le gaz et le centre actif deviennent plus faibles.

La structure des adsorbants, par exemple leur composition et leurs propriétés physiques (surface spécifique, volume et taille de pores), a un grand effet sur l’adsorption de CH4.

Pour tous les adsorbants, le volume et la taille sont déterminants pour favoriser les interactions entre le gaz et l’adsorbant. La capacité d’adsorption est aussi influencée par la forme du matériau, soit extrudé [44] ou en poudre [26].

La capacité d’adsorption des matériaux est très variable. Les matériaux qui présentent la capacité d’adsorption de CH4 la plus élevée sont les POP (11,69 mmol/g COF-102 à 3 500

kPa et 25 ºC). Cependant, ils ne sont pas recommandés pour leur application sous des conditions ambiantes, car leur capacité d’adsorption a été obtenue à haute pression (P > 1 500 kPa). Les MOF présentent une vaste plage des capacités d’adsorption (0,15 -1,5 mmol CH4/g d’adsorbant à 101,3 kPa de pression et températures parmi 0 et 42 ºC). Ils ont une

forte dépendance aux métaux présents dans leur structure ainsi qu’aux conditions d’adsorption (pression et température). Les matériaux carbonés présentent une vaste plage des capacités d’adsorption (7,00·10-3

-0,98 mmol CH4/g d’adsorbant à 101,3 kPa de

pression et 25 ºC de température). Ils ont une forte dépendance de leur structure (surface spécifique et volume de pores) ainsi qu’aux conditions d’adsorption (pression et température). Néanmoins, une vaste gamme de matériaux carbonés est commercialement

38

disponible, favorisant leur utilisation. Les zéolithes ont des capacités d’adsorption du CH4

plus modérées (< 0,7 mmol CH4/g à 101,3 kPa et 25 ºC). Cependant, leur stabilité chimique

et physique, et l’existence d’une vaste gamme de produits commerciaux facilitent leur utilisation.

39

Références

[1] Sircar, S., Publications on adsorption science and technology. Adsorption, 6 (2000) 359-365.

[2] Ruthven, D.M., Principles of adsorption and adsorption processes. Wiley, New York, (1984).

[3] Billemont, P., B. Coasne, G. De Weireld, An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water. Langmuir, 27 (2010) 1015-1024.

[4] Billemont, P., B. Coasne, G. De Weireld, Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder. Langmuir, 29 (2013) 3328-3338.

[5] Choi, S., J.H. Drese, C.W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chem Sus Chem, 2 (2009) 796-854.

[6] San Miguel, G., S.D. Lambert, N.J.D. Graham, A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters. J Chem Tecnol Biot, 81 (2006) 1685-1696.

[7] Yang, R.T., Zeolites and molecular sieves. Adsorbents: fundamentals and applications, John Wiley & Song, Inc., New Jersey, United States of America, (2003).

[8] Wright, P.A., G.M. Pearce, Structural chemistry of zeolites. Zeolites and Catalysis, Wiley-VCH (2010), pp. 171-207.

[9] Sebastián, V., C. Casado, J. Coronas, Special applications of zeolites. in: J. Čejka, A. Corma, S. Zones (Eds.) Zeolites and catalysis, Wiley-VCH (2010), pp. 389-410.

[10] Goyal, M., Nonenvironmental industrial applications of activated carbon adsorption. in: Tascón, J.M.D. (Ed.) Novel Carbon Adsorbents, Elsevier, Oxford, (2012), pp. 605-638. [11] Gong, G.-Z., Q. Xie, Y-F. Zheng, S-F. Ye, Y-F. Chen, Regulation of pore size distribution in coal-based activated carbon. New Carbon Mater, 24 (2009) 141-146.

[12] Gracia-Espino, E., F. López-Urías, H. Terrones, M. Terrones, Novel nanocarbons for adsorption. in: Tascón, J.M.D. (Ed.) Novel Carbon Adsorbents, Elsevier, Oxford, (2012), pp. 3-34.

[13] Makal, T.A., J.-R. Li, W. Lu, H.-C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev., 41 (2012) 7761-7779.

40

[14] Horike, S., S. Kitagawa, Design of porous coordination polymers / Metal organic frameworks: past, present and future. in: Farrusseng, D. (Ed.) Metal-organic frameworks: applications from catalysis to gas storage, Wiley-VCH (2011), pp. 1-21.

[15] Horcajada, P., C. Serre, A.C. McKinlay, R.E. Morris, Biomedical applications of metal organic frameworks. in: Farrusseng, D. (Ed.) Metal-organic frameworks: applications from catalysis to gas storage, Wiley-VCH (2011), pp. 213-250.

[16] Li, W., G. Gahungu, J. Zhang, L. Hao, Design of an organic zeolite toward the selective adsorption of small molecules at the dispersion corrected density functional theory level. J Phys Chem B, 113 (2009) 16472-16478.

[17] Zhu, G., H. Ren, Porous organic frameworks: design, synthesis and their advanced applications. Springer Berlin Heidelberg(2014).

[18] Ding, S.-Y., W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 42 (2013) 548-568.

[19] Chang, Z., D.-S. Zhang, Q. Chen, X.-H. Bu, Microporous organic polymers for gas storage and separation applications. Phys. Chem. Chem. Phys., 15 (2013) 5430-5442. [20] Mendoza-Cortés, J.L., S.S. Han, H. Furukawa, O.M. Yaghi, W.A. Goddard, Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. J Phys Chem A, 114 (2010) 10824-10833.

[21] Feng, X., X. Ding, D. Jiang, Covalent organic frameworks. Chem. Soc. Rev., 41 (2012) 6010-6022.

[22] Pei, C., T. Ben, Y. Cui, S. Qiu, Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption, 18 (2012) 375-380.

[23] Ahmed, M.J., S.K. Theydan, Equilibrium isotherms studies for light hydrocarbons adsorption on 4A molecular sieve zeolite. J. Pet. Sci. Eng., 108 (2013) 316-320.

[24] Godbout, S., V.R. Phillips, R. W. Sneath, Passive flux samplers to measure nitrous oxide and methane emissions from agricultural sources, Part 1: adsorbent selection. Biosyst Eng, 94 (2006) 587-596.

[25] Saha, D., Z. Bao, F. Jia, S. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5,

MOF-177, and Zeolite 5A. Environ. Sci. Technol., 44 (2010) 1820-1826.

[26] Eyer, S., N.P. Stadie, A. Borgschulte, L. Emmenegger, J. Mohn, Methane preconcentration by adsorption: a methodology for materials and conditions selection. Adsorption, 20 (2014) 657-666.

[27] Bao, Z., L. Yu, T. Dou, et al., Adsorption equilibria of CO2, CH4, N2, O2, and Ar on

41

[28] Yang, J., J. Li, W. Wang, L. Li, J. Li, Adsorption of CO2, CH4, and N2 on 8-, 10-, and

12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta. Ind Eng Chem Res, 52 (2013) 17856-17864.

[29] Bao, Z., L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesium-

based metal organic framework. J. Colloid Interface Sci., 353 (2011) 549-556.

[30] Zhao, Y., C. Jiang, W. Chu, Methane adsorption behavior on coal having different pore structures. International Journal of Mining Science and Technology, 22 (2012) 757- 761.

[31] Hao, S., J. Wen, X. Yu, W. Chu, Effect of the surface oxygen groups on methane adsorption on coals. Appl. Surf. Sci., 264 (2013) 433-442.

[32] Ning, P., F. Li, H. Yi, et al., Adsorption equilibrium of methane and carbon dioxide on microwave-activated carbon. Sep. Purif. Technol., 98 (2012) 321-326.

[33] Yi, H., F. Li, P. Ning, et al., Adsorption separation of CO2, CH4, and N2 on microwave

activated carbon. Chem. Eng. J., 215-216 (2013) 635-642.

[34] Liu, J., Y. Zhou, Y. Sun, W. Su, L. Zhou, Methane storage in wet carbon of tailored pore sizes. Carbon, 49 (2011) 3731-3736.

[35] Salehi, E., V. Taghikhani, C. Ghotbi, E. Nemati Lay, A. Shojaei, Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25°C. J Nat Gas Chem, 16 (2007) 415-422.

[36] Yang, H., M. Gong, Y. Chen, Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. J Nat Gas Chem, 20 (2011) 460-464.

[37] Esteves, I.A.A.C., M.S.S. Lopes, P.M.C. Nunes, J.P.B. Mota, Adsorption of natural gas and biogas components on activated carbon. Sep. Purif. Technol., 62 (2008) 281-296. [38] Mason, J.A., M. Veenstra, J.R. Long, Evaluating metal-organic frameworks for natural gas storage. Chem Sci, 5 (2014) 32-51.

[39] Karra, J.R., B.E. Grabicka, Y.-G. Huang, K.S. Walton, Adsorption study of CO2, CH4,

N2, and H2O on an interwoven copper carboxylate metal–organic framework (MOF-14). J.

Colloid Interface Sci., 392 (2013) 331-336.

[40] Mishra, P., S. Edubilli, B. Mandal, S. Gumma, Adsorption characteristics of metal– organic frameworks containing coordinatively unsaturated metal sites: effect of metal cations and adsorbate properties. J Phys Chem C, 118 (2014) 6847-6855.

[41] Spanopoulos, I., P. Xydias, C.D. Malliakas, P.N. Trikalitis, A straight forward route for the development of metal–organic frameworks functionalized with aromatic −OH

42

groups: synthesis, characterization, and gas (N2, Ar, H2, CO2, CH4, NH3) sorption

properties. Inorg. Chem., 52 (2013) 855-862.

[42] Abid, H.R., G.H. Pham, H.-M. Ang, M.O. Tade, S. Wang, Adsorption of CH4 and CO2

on Zr-metal organic frameworks. J. Colloid Interface Sci., 366 (2012) 120-124.

[43] Bao, Z., S. Alnemrat, L. Yu, et al., Kinetic separation of carbon dioxide and methane on a copper metal–organic framework. J. Colloid Interface Sci., 357 (2011) 504-509.

[44] Asadi, T., M. Ehsani, An experimental study of adsorption breakthrough curves for CO2/CH4 separation in a fixed fed of nanoporous shaped copper trimesate metal organic

framework. IJOGST, 2 (2013) 54-66.

[45] Duan, X., Q. Zhang, J. Cai, et al., A new microporous metal–organic framework with potential for highly selective separation methane from acetylene, ethylene and ethane at room temperature. Microporous Mesoporous Mater., 190 (2014) 32-37.

[46] Furukawa, H., O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc., 131 (2009) 8875-8883.

[47] Ma, H., H. Ren, S. Meng, et al., A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chem. Commun., 49

(2013) 9773-9775.

[48] Mohanty, P., L.D. Kull, K. Landskron, Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat Commun, 2 (2011) 401.

[49] Liu, Y., D. Liu, Q. Yang, C. Zhong, J. Mi, Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures. Ind Eng Chem Res, 49 (2010)

2902-2906.

[50] Zhao, J., T. Yan, Effects of substituent groups on methane adsorption in covalent organic frameworks. RSC Advances, 4 (2014) 15542-15551.

[51] Tedesco, C., L. Erra, M. Brunelli, et al., Methane adsorption in a supramolecular organic zeolite. Chem. Eur. J., 16 (2010) 2371-2374.

[52] Ben, T., C. Pei, D. Zhang, et al., Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci, 4 (2011) 3991-3999.

[53] Wang, W., Y. Yuan, F. Sun, M. Zhao, H. Ren, G. Zhu, Novel porous aromatic framework with excellent separation capability of CO2 in N2 or CH4. Chem Res Chinese U,

43

Documents relatifs