• Aucun résultat trouvé

3 : Constantes physiques et données spectrales des composés isolés

Dans le document Etude phytochimique de Veronica rosea (Page 156-170)

Chapitre V : partie expérimentale

V- 3 : Constantes physiques et données spectrales des composés isolés

CH2Cl2 / MeOH (65 : 35) pour conduire à l’état pur le composé VR9 (9 mg) .

La fraction Fr10 :

La fraction Fr10 (68mg) contient un produit majoritaire qui a précipité dans MeOH. Ce dernier est lavé plusieurs fois au méthanol pour donner le composé VR10 (25mg).

 

V-3 Constantes physiques et données spectrales des composés isolés  

Composé VR1 Isoscutellarein7-O-(6’’’-O-acetyl--D-allopyranosyl- (1→2)]--D-glucopyranoside

Formule brute : C27H31O17 poudre jaune

627 g/mol

MS : ESI (mode positif) m/z : 650,019 [M+Na]+

RMN 1H (400 MHz) et RMN 13C (125 MHz) dans (CD3OD)

(Tableau III-2, pages 66)

   

Composé VR2 Isoscutellarein-7-O -β-D-glucopyranoside

Formule brute : C21H20O11 poudre jaune

436 g/mol

MS : ESI (mode positif) m/z : 471,009 [M+Na]+

RMN 1H (500 MHz) et RMN 13C (125 MHz) dans (DMSO)

(Tableau III-3 pages 72)

 

Composé VR3 Isoscutellarein-8-O -β-D-glucopyranoside

Formule brute : C21H20O11 poudre jaune

436 g/mol

RMN 1H (400 MHz) et RMN 13C (125 MHz) dans (DMSO)

(Tableau III-4, pages 77)

 

Composé VR4 Isoscutellareine

Formule brute : C15H10O6 poudre jaune

286.239 g/mol

MS : ESI (mode négatif) m/z : 285,1729 [M-H]-

RMN 1H (500 MHz) et RMN 13C (125 MHz) dans CD3OD)

(Tableau III-5, pages 81)

Composé VR5 apigenin-7-O--glucopyranoside

Formule brute : C21H20O10 poudre jaune

432.4 g/mol

MS : ESI (mode positif) m/z : 455,09 [M+Na]+

RMN 1H (500 MHz) et RMN 13C (125 MHz) dans (CD3OD) (Tableau III-6, pages 85)

Composé VR6 Luteolin-7-O-Glucoside Formule brute : C21H20O11

poudre jaune

448,37g/mol

MS : ESI (mode positif) m/z : 471 [M+Na]+

RMN 1H (500 MHz) et RMN 13C (125 MHz) dans CD3OD) (Tableau III-7, pages 93)

Composé VR7 Luteoline

Formule brute : C15H10O6 poudre jaune

286,24 g/mol

MS : ESI (mode positif) m/z : 286, 0810 [M+].

RMN 1H (500 MHz) et RMN 13C (150 MHz) dans (CD3OD)

(tableau III-8, page 96)

   

Composé 8 Ajugol

Formule brute : C15H24O9 poudre jaune

348,345g/mol

MS : ESI (mode positif) m/z : 371.342 [M+Na]+

RMN 1H (500 MHz) et RMN 13C (150 MHz) dans CD3OD) (Tableau III-9, pages 104)

     

Composé VR9 Macfadeonoside Formule brute : C15H22O11

poudre blanche 378,33 g/mol

RMN 1H (500 MHz) et RMN 13C (150 MHz) dans CD3OD) (Tableau III-10, pages 112)     Composé VR10 Mannitol Formule brute : C6H14O6 poudre blanche 182 g/mol

MS : ESI (mode positif) m/z : 205,0 [M+Na]+ RMN 1H (500 MHz) et RMN 13C (150 MHz) dans (DMSO) (Tableau III-11, pages 116)

   

Conclusion générale

Ce travail de thèse avait pour objectif d’isoler, d’identifier les métabolites secondaires et d’évaluer les activités anti oxydantes et anti corrosion de Veronica rosea, une espèce appartenant à la famille des Plantaginacées et qui n’a jamais fait l’objet d’études phytochimiques ni biologiques auparavant.

Après extraction hydroalcoolique des parties aériennes, on procède à la concentration des extraits hydroalcoolique et leurs affrontements par l’éther de pétrole, l’acétate d’éthyle et le n-butanol successivement.

Nous soumettons ensuite l’extrait butanolique obtenu aux différentes techniques de séparation notamment la chromatographie sur colonne de gel de silice. Les structures des produits isolés sont déterminées grâce à l’utilisation des différentes méthodes spectrales à savoir la spectrophotométrie UV-Visible, la RMN1D (1H et 13C), RMN 2D (HSQC, HMBC, COSY), la spectrométrie de masse, mesure du pouvoir rotatoire puis par comparaison des données récoltées avec les données de la littérature.

L’étude phytochimique menée a permis l’obtention et l’identification de dix produits. Il s’agit de sept flavonoïdes, deux iridoïdes et un sucre. Ils se repartissent comme suit :

- Isoscutellareine 7-O- [6-O-acétyl-β-D -allopyranosyl- (1 → 2)] - β-D-glucopyranoside - Isoscutellarein-7-O -β-D-glucopyranoside - Isoscutellarein-8-O -β-D-glucopyranoside - Isoscutellareine - Apigéniné-7-O-β-glucopyranoside - Lutéoline - Luteolin-7-O-Glucoside - Macfadienoside - Ajugol - Mannitol

La présence majoritaire des flavonoïdes et iridoïdes est en parfait accord avec les études phytochimiques antérieures effectuées sur les plantes du genre Veronica. Ces métabolites secondaires sont des marqueurs chimiotaxonomiques de ce genre.

Vu la richesse de l’espèce Veronica rosea en flavonoïdes, nous avons évalué in vitro l’activité anti oxydante de l’extrait n-butanolique par l’utilisation du test scavenger de DPPH.

Les résultats obtenus indiquent que l’extrait testé manifeste un pouvoir anti oxydant significatif (IC50= 45,17± 0,18).

En outre, cet extrait n-butanolique a montré une excellente activité inhibitrice de corrosion du cuivre dans une solution de HNO3 (IE=94.36%).

Pour la suite, Il est souhaitable de mener une étude phytochimique complémentaires sur la partie des racines, et d’évaluer d’autres activités biologiques in vitro et in vivo de cette espèce.

Les structures des composés isolés s’établissent comme suit :

VR1 : Isoscutellareine 7-O- [6-O-acétyl-β-D - allopyranosyl- (1 → 2)] - β-D-glucopyranoside

VR2 : Isoscutellarein-7-O -β-D- glucopyranoside

VR3 : Isoscutellarein-8-O -β-D-glucopyranoside VR4 : Isoscutellareine

O HO OH O OH OH H 2 3 4 5 6 7 8 9 10 1' 2' 3' 4' 5' 6' VR7 : Luteoline VR9 : macfadienoside VR8 : Ajugol VR10 : Mannitol

Formerly Natural Product Letters

ISSN: 1478-6419 (Print) 1478-6427 (Online) Journal homepage: http://www.tandfonline.com/loi/gnpl20

Phytochemical compounds and anti-corrosion

activity of Veronica rosea

Rachid Ouache, Hassina Harkat, Patrick Pale & Kafia Oulmi

To cite this article: Rachid Ouache, Hassina Harkat, Patrick Pale & Kafia Oulmi (2018):

Phytochemical compounds and anti-corrosion activity of Veronica rosea, Natural Product Research, DOI: 10.1080/14786419.2018.1474464

To link to this article: https://doi.org/10.1080/14786419.2018.1474464

View supplementary material

Published online: 16 May 2018.

Submit your article to this journal

View related articles

SHORT COMMUNICATION

Phytochemical compounds and anti-corrosion activity of

Veronica rosea

Rachid Ouachea,b, Hassina Harkata, Patrick Palec and Kafia Oulmib

alaboratoire de physio-toxicologie, pathologie cellulaires et moléculaires-biomolécules (lPtPcMB), Faculté

de Médecine, département de Pharmacie, université de Batna-2, Batna, algérie; bFaculté des sciences

de la Matière, département de chimie, université de Batna-1, Batna, algérie; claboratoire de synthèse et

réactivité organiques, associé au cNrs, Institut de chimie de strasbourg uMr 7177, université de strasbourg, strasbourg, France

ABSTRACT

The aim of this work is the phytochemical study of the butanolic extract of the aerial parts of Veronica rosea. Four compounds 1–4 have been isolated using different chromatographic methods. The structures of these compounds were determined by NMR spectral analysis and mass spectroscopy. The adsorption and anticorrosion effects of this extract were investigated towards the corrosion of copper in 1  M HNO3 aqueous by the weight loss technique and potentiodynamic polarization. The results showed that the butanolic extract is a good inhibitor and the inhibition efficiency increases with increasing of concentration of the inhibitor. The adsorption of this extract on the copper specimen surface was spontaneous and obeyed the Langmuir’s adsorption isotherm. Large value of adsorption equilibrium Constant (Kads = 35 L g−1) was obtained. The polarization

experiments confirmed the data obtained by gravimetric weight-loss. Tafel plot of polarization curves indicates that the extract acts as a mixed type inhibitor.

KEYWORDS

Veronica rosea; flavonoids;

green inhibitor; adsorption; copper

ARTICLE HISTORY received 7 January 2018 accepted 6 May 2018

1. Introduction

The genus Veronica (Plantaginaceae), is widely distributed in the temperate zone of both hemispheres, and it is represented by 450 species in the world (López-González et al. 2015). Some of the Veronica species have reported interesting biological activities such as antibac- terial (Živković et al. 2014), antioxidant (Harput et al. 2011), and anti-inflammatory (Beara et al. 2015).

In folk medicine, some Veronica species are used for pulmonary, and gastrointestinal diseases, as well as renal lithiasis (Gründemann et al. 2013). The genus veronica is known for its richness in flavonoid (Albach et al. 2003; Taskova et al. 2008) iridoid (Kroll-Møller et al.

2017) and phenylethanoid metabolites (Kostadinova et al. 2007).

In this work we report the phytochemical study of butanolic extract of the aerial parts as well as the evaluation of the adsorption and the anti-corrosion activity of this extract.

2. Results and discussion

2.1. Plant collection and extraction

2.1.1. Chemical constituents of n-butanol extract

The phytochemical study of butanolic extract of aerial parts of Veronica rosea led to the iso- lation and identification of four compounds. The structures of these compounds (Figure 1) were identified clearly by analysis of 1H-and 13C-NMR, mass spectrometry data and by com- parison with published data. The isolated compounds were identified as apigenin-7-O-β- glucopyranoside 1 (Taskova et al. 2008; Li et al. 2009) Isoscutellarein7-O-β-d-glucopyranoside Figure 1. structures of isolated compounds 1–4.

the anticorrosion activity of butanolic extract was examined. To the best of our knowledge, nothing has been specifically reported on the use of V. rosea extract for the inhibition of copper corrosion in nitric acid (HNO3).

2.2. Anti- corrosion activities 2.2.1. Weight loss measurements

The corrosion rates of metals and alloys can be determined using different electrochemical and non-electrochemical methods (Khadraoui et al. 2014; Fouda et al. 2015) . The weight loss method of monitoring corrosion rate is useful because of its simple application and reliability (Popova et al. 2003). The corrosion rate of copper was studied at the temperature of 293 K in 1 M nitric acid solution in the absence and the presence of butanolic extract of V. rosea (20–300 ppm). The inhibition efficiency (IE%), coverage surface (θ) and corrosion rate (CR) values are summarized in Table 1.

In the absence of inhibitor, the corrosion rate was 1.79 mg cm−2 h−1(17.54 mm/y). After

adding butanolic extract with different concentrations, the corrosion of copper was retarded. The maximum (%IE) values at 300 ppm was 94.36%, which indicates that butanolic extract of V. rosea acts as a good inhibitor for copper corrosion in 1.0 M HNO3.

2.2.2. Adsorption isotherms analysis

The values of coverage surface (θ) for different concentrations of butanolic extract of V. rosea have been used to explain the best isotherm and to determine the adsorption process. Attempts were made to fit (θ) values to various isotherms (Supplementary file), including Langmuir, Langmuir–Freundlich, Frumkin, Temkin and Flory–Huggins isotherms (Koopal

2008; Damaskin et al. Ed. 1971).

In this study, Langmuir adsorption isotherm was found to be suitable for the experimental findings. The best fit of the experimental data was considered acceptable when the corre- lation coefficient was R2 ≥ 0.98.

The negative value of the standard free energy of adsorption and the high value of the adsorption constant indicates a spontaneous adsorption of this organic inhibitor on copper.

2.2.3. Potentiodynamic polarization studies

The cell used for the Potentiodynamic polarization studies, was a conventional three elec- trode system with platinum auxiliary electrode, saturated calomel as reference electrode Table 1. corrosion rate and inhibition efficiency parameters obtained from Weight loss for copper in 1 M hNo3 solution with and without of different concentration of the butanol extract of V. rosea at (293 K).

Conc. (ppm) Weight loss (mg) CR (mg cm−2 h−1) CR (mm/y) IE% θ

Blank 14.2 1.79 17.54 – –

20 9.5 1.20 11.76 33.09 0.330

50 4.0 0.50 4.89 71.18 0.711

100 1.5 0.18 1.76 89.43 0.894

potential (Ecorr), corrosion current (icorr), anodic Tafel constant (βa), cathodic Tafel constant c) and IE were calculated and given in Table 2.

Inspection of Table 2 indicates that The inhibition efficiency of this extract is 87.35% . Also, there is significant change in the anodic and cathodic slopes after the addition of the butanolic extract of V. rosea (Figure S7). These Tafel curves indicate that this extract acts as a mixed-type inhibitor.

3. Conclusion

The study of butanolic extract of the aerial parts of V. rosea acts as a good inhibitor for the copper corrosion in 1.0 M HNO3 solution. The analysis of the results obtained shows that the inhibition efficiency increases with the increase of the butanolic extract concentrations. The adsorption of the organic compound of this extract on the copper surface follows the Langmuir model. The important value of Kads (35Lg-1) and the negative value of ΔGads° (−25 kJ/mol) indicates that the adsorption of this extract on copper surface is spontaneous and may be explained by the presence of O atoms and conjugate double bond. Polarization curves demonstrated that the butanolic extract of the aerial parts of V. rosea is a mixed-type inhibitor for copper surface in 1 M HNO3 solution. The results obtained from the different methods are in good agreement.

Supplementary material

Experimental material relating to this article and supporting NMR information are available online.

Acknowledgements

The authors wish to express their acknowledgements to the University of Strasbourg (France), for providing research facilities and technical support and Dr for his help to realised the potentiodynamic polarization studies

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Albach DC, Grayer RJ, Jensen SR, Özgökce F, Veitch NC. 2003. Acylated flavone glycosides from Veronica. Table 2. Potentiodynamic polarization parameters for the corrosion of copper in 1  M hNo3 solution without and with 300 ppm of butanolic extract of V. rosea at (293 K).

Conc. (ppm) E (mV) icorr (μA/cm2) β

c (mVdec−1) βa (mVdec−1) IE% θ

Blank −26.0 55.91 −210.6 52.0

Damaskin B, Petrii OA, Batrakov VV. 1971. Adsorption of organic compounds on electrodes. New York (NY): Plenum Press.

Fouda AS, Shalabi K, Idress AA. 2015. Ceratonia siliqua extract as a green corrosion inhibitor for copper and brass in nitric acid solutions. Green Chem Lett Rev. 8:17–29.

Gründemann C, Garcia-Käufer M, Sauer B, Stangenberg E, Könczöl M, Merfort I, Zehl M, Huber R. 2013. Traditionally used Veronica officinalis inhibits proinflammatory mediators via the NF-κB signalling pathway in a human lung cell line. J Ethnopharmacol. 145:118–126.

Harput US, Genç Y, Khan N, Saracoglu I. 2011. Radical scavenging effects of different Veronica species. Rec Nat Prod. 5:100–107.

Khadraoui A, Khelifa A, Boutoumi H, Hammouti B. 2014. Mentha pulegium extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies. Nat Prod Res. 28:1206–1209. Koopal LK. 2008. Interface science. 2nd ed. Wageningen: Wageningen University.

Kostadinova EP, Alipieva KI, Kokubun T, Taskova RM, Handjieva NV. 2007. Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana. Phytochemistry. 68:1321–1326.

Kroll-Møller P, Pedersen K, Gousiadou C, Kokubun T, Albach D, Taskova R, Garnock-Jones PJ, Gotfredsen CH, Jensen SR. 2017. Iridoid glucosides in the genus Veronica (Plantaginaceae) from New Zealand. Phytochemistry. 140:174–180.

Li J, Jiang H, Shi R. 2009. A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni. Nat Prod Res. 23:1378–1383.

López-González NL, Mayland-Quellhorst EM, Pinto-Carrasco DP, Martínez-Ortega MM. 2015. Characterization of 12 Polymorphic SSR Markers in Veronica Subsect. Pentasepalae (Plantaginaceae) and Cross-Amplification in 10 Other Subgenera. Appl Plant Sci. 3:1500059.

Palomino OM, Söllhuber M, Carretero E, Villar A. 1996. Isoscutellarein 7-glucosyl(1 → 2)xyloside from sixteen species of Sideritis. Phytochemistry. 42:101–102.

Pedersen P, Gotfredsen CH, Wagstaff SJ, Jensen SR. 2007. Chemical markers in Veronica sect. Hebe. II. Biochem Syst Ecol. 35:777–784.

Popova A, Sokolova E, Raicheva S, Christov M. 2003. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros Sci. 45:33–58. Taskova RM, Kokubun T, Grayer RJ, Ryan KG, Garnock-Jones PJ. 2008. Flavonoid profiles in the Heliohebe

group of New Zealand Veronica (Plantaginaceae). Biochem Syst Ecol. 36:110–116.

Živković J, Barreira JCM, Stojković D, Ćebović T, Santos-Buelga C, Maksimović Z, Ferreira ICFR. 2014. Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq. J Funct Foods. 9:192–201.

Ce travail est consacré à l’étude phytochimique ainsi l’évaluation des activités anti oxydante et anti corrosion des parties aériennes de Veronica rosea, une espèce endémique non étudiée, appartenant à la famille des plantaginacées. Cette famille est connue par sa richesse en divers métabolites secondaires d’un grand intérêt biologique notamment les flavonoïdes et les iridoïdes.

Cette étude a permis l’obtention et l’identification de 10 produits. Il s’agit de sept flavonoïdes, deux iridoïdes et un sucre. La détermination des structures ont été élucidées par les méthodes spectroscopies (RMN, Masse et UV) et par comparaison avec les données de la littérature.

Une investigation de l’activité antioxydant, par la méthode test scavenger de DPPH de l’extrait butanolique, a montré que notre espèce possède un pouvoir anti oxydant significatif. De plus, l’extrait butanolique a manifesté une excellente activité inhibitrice de corrosion du cuivre dans une solution de HNO3

Mots clés : plantaginacées, Veronica rosea, flavonoïdes, iridoïdes, activité antioxydant,

activité anti corrosion.

صخلم ذھ اب متھي لمعلا ا دل ةسار نم ةيئاوھلا ءازجلأا يف لكآتلا تاداضمو ةدسكلأا تاداضم ةطشنأ مييقتو ةيئايميكوتيفلا Veronica rosea ةلئاع ىلا ةيمتنملا و لبق نم اھتسارد متي مل يتلا ، plantaginacées ةلئاعلا هذھ رھتشت ثيح، ا ةيمھلأا تاذ ةيعيبطلا تابكرملا فلتخم ىلع اھترفوب ةصاخ ةريبكلا ةيجولويبل ديوديريلإاو ديونوفلافلا تابكرم . هذھ انتنكم دقل ىلع لوصحلا نم ةساردلا 10 : تابكرم ةعبس لا نم ، ديونوفلاف لاا نم نينثا ير د مت .دحاو ركسو ديو يوينبلا فرعتلا ا ىلع فلتخم ةطساوب تابكرمل ةيفايطملا قرطلا (RMN, Masse et UV) و ةنراقملاب اذك تانايب عم عجارملا . رھظأ ت ةسارد ضم طاشن دا رابتخا ةقيرط ةطساوب ةدسكلأا DPPH ل صلختسم نأ ، لوناتوبلا ةتبنلا هذھل اھل ةيلعف دض ةربتعم ا لولحم يف يساحنلا لكآتلل اًزاتمم اًطبثم اًطاشن لوناتوبلا صلختسم رھظأ ، كلذ ىلإ ةفاضلإاب .ةدسكلأ يضمح 3 HNO . ثحبلا تاملك ،ةدسكلاا دض ةطشنا ،ديوديريلاا ،ديونوفلافلا : plantaginacées ، Veronica rosea .  

Dans le document Etude phytochimique de Veronica rosea (Page 156-170)

Documents relatifs