• Aucun résultat trouvé

Conditions suffisantes pour que l’hypoth` ese B3 soit satisfaite

B.2 Hypoth` ese A2”

I.2 Conditions suffisantes pour que l’hypoth` ese B3 soit satisfaite

Nous allons montrer que l’hypoth`ese B3.1 est satisfaite si (I.7), (I.8), (I.16), (I.19) et (I.22) sont v´erifi´ees.

Nous avons :

A(x1, x2, y) ≤ |x2|(1 + |x2|) (|y|n2+|y|m2) +|x2|(1 + |x1|) (|y|p2+|y|m1) , +|x1|(1 + |x1|) (|y|n1 +|y|p1) .

(I.28)

Par cons´equent :

A(x1, x2, y) ≤ |x2|(1 + |x2| + |x1|) (|y|n2+|y|m2+|y|p2+|y|m1) +|x1|(1 + |x1|) (|y|n1+|y|p1) . (I.29) De (I.16), (I.19) et (I.22) on d´eduit l’existence d’une fonction ˜κ continue et positive telle que :

A(x1, x2, y) ≤ |x2|(1 + |x2| + |x1|)˜κ(y)|y|

q

2 + |x1|(1 + |x1|)˜κ(y)|y|q . (I.30)

D’apr`es les d´efinitions de V , W , Q, S et T , on a donc :

A(x1, x2, y) ≤ c " 1 + Q(x1) + S(x2) # ˜ κ(y) V (y)14 W (y) T (x2) + c " 1 + Q(x1) + S(x2) #2 κ(y)˜ V (y)12 W (y) . (I.31)

Mais, d’apr`es le Lemme E.1 de l’annexe E, il existe une fonction ˜κ telle que :˜ ˜

˜

κ(V (y)) ≥ ˜κ(y)2+ ˜κ(y) . (I.32)

efinissons maintenant κ par :

κ(v) = cκ(v)˜˜ v . (I.33) Alors : A(x1, x2, y) ≤ c " 1 + Q(x1) + S(x2) # κ(V (y)) W (y) T (x2) + c " 1 + Q(x1) + S(x2) #2 κ(V (y))W (y) . (I.34)

L’in´egalit´e (2.10) est donc obtenue. De plus : 

κ(V (y))∂V∂y(y) ≤ ˜˜κ(V (y)) . (I.35)

La fonction ˜κ(v) ´˜ etant continue, la propri´et´e (2.12) est v´erifi´ee. On v´erifie de fa¸con imm´ediate que B3.2 est v´erifi´ee si et seulement si

r > 1 (I.36)

ou

q < min{n1, p1, 2n2, 2m2, 2p2, 2m1,} . (I.37)

Les conditions n´ecessaires et suffisantes pour que l’hypoth`ese B3 soit v´erifi´ee avec les fonctions

[1] Z. Artstein : Stabilization with relaxed controls. Nonlinear Anal. (1983) 1163-1173. [2] A. Bacciotti : Local Stabilizability of non linear control systems. Series on Advances in

Mathematics for Applied Sciences, Vol.8, World Scientific, 1992.

[3] Y. Bibikov : Local Theory of Nonlinear Analytic Ordinary Differential Equations. Springer- Verlag Berlin Heidelberg New York 1979.

[4] V.A. Brusin : Global stabilization of the inverted pendulum on the cart. Report of the Nizhny Novgorod Architectural and Building Institute. Krasnoflotskaya 65 NABI, 603000, Nizhny Novgorod, Russia, 1992.

[5] C. Byrnes, A. Isidori : New results and examples in nonlinear feedback stabilization. Sys- tems & Control Letters. 12 (1989) 437-442

[6] J. Carr : Applications of Centre Manifold Theory. Springer Verlag 1981.

[7] D. Chen, B. Paden : Stable Inversion of Nonlinear Nonminimun Phase Systems.

[8] W.A. Coppel : Dichotomies in Stability Theory. Springer-Verlag Berlin Heidelberg New York 1978.

[9] J.-M. Coron, Linearized control systems and its applications to smooth stabilization. SIAM. J. Optimization and Control, 32, No 2, pp. 358-386, March 1994.

[10] J.-M. Coron, B. d’Andrea-Novel : Smooth stabilizing time-varying control laws for a class

of nonlinear systems. Application to mobile robots. Proceedings-Actes Nolcos 92. Non lin-

ear control systems design symposium 92. 24-26 June 1992. Bordeaux-France.

[11] J.M. Coron, L. Praly : Adding an integrator for the stabilization problem. Systems & Control Letters 17 (1991) 89-104.

[12] Danskin : The theory of Max-Min and its application to weapons allocation problem. Springer Verlag, Berlin, Heidelberg, New York 1967.

[13] Degang Chen : Output Tracking Control of Nonlinear Nonminimum Phase Systems. Pro- ceedings of the 33rd Conference on Decision and Control Lake Buena Vista, FL-Decembre 1994.

[14] P. Deheuvels , L’int´egrale. Presses universitaires de France, Paris 1980.

[15] A.V. Fiacco, G.P. McCormick : Nonlinear Programming : Sequential unconstrained min-

imization techniques. John Wiley and Sons. 1968.

[16] M. Fliess, J.L´evine, Ph. Martin, and P. Rouchon : On differentially flat non linear system. In Proceedings if IFAC NOLCOS Conf., Bordeaux, France, 1992.

[17] M. Fliess, J.L´evine, Ph. Martin, and P. Rouchon : Flatness and defect of non-linear

systems : introductory theory and examples. INT. J. Control, 1995, vol.61, no.6, 1327-

1361.

[18] F.R. Gantmacher, Th´eorie des matrices. Tome 1, Dunod, Paris 1966.

[19] J.P. Gauthier, G. Bornard, Stabilisation des syst`emes non-lin´eaires. Outils et mod`eles math´ematiques pour l’automatique, l’analyse des syst`emes et le traitement du signal. Ed. du CNRS, 1981.

[20] J. W. Grizzle, M.D. Di Benedetto, F. Lamnabhi-Lagarrigue, Necessary Conditions for

Asymptotic Tracking in Nonlinear Systems. IEEE Transactions on Automatic Contol,

39(9):1782-1794, 1994.

[21] J.K. Hale : Ordinary differential equations. Robert E. Krieger publishing company, Mal- abar, Florida.

[22] J. Hauser, S. Sastry, P. Kokotovic : Nonlinear control via approximate input-output

linearization : the ball and beam example. IEEE Transactions on Automatic Contol,

37(3):392-398, 1992.

[23] J. Hauser, S. Sastry, G. Mayer : Nonlinear Control Design for Slightly Nonminimum Phase

Systems : Application ot V/STOL Aircraft. Automatica, 28 No 4, pp 665-679, 1992.

[24] H. Hermes : Nilpotent and high-order approximations of vector field systems. SIAM Vol. 33, No. 2, pp. 238-264, June 1991.

[25] R. Hirschorn, J. Davis : Output tracking for nonlinear systems with singular points. SIAM J. Contr. Optim., vol. 25, no. 3, pp.

[26] M. Ikeda, H. Maeda, S. Kodama : Estimation and feedback in linear time-varying systems :

a deterministic theory. SIAM J. Control, vol.13, no. 2, 1975.

[27] A. Isidori : Nonlinear Control System. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong.

[28] M.J. Jankovic, R. Sepulchre, P. V. Kokotovic : Global stabilization of an enlarged class of

cascade nonlinear systems. Submitted for publication in IEEE Transactions on Automatic

control.

[29] V. Jurdjevic, J.P. Quinn : Controllability and stability. Journal of differential equations. vol. 4 (1978) pp. 381-389

[30] R.E. Kalman : Contribution to the theory of optimal control Bol. Soc. Mat. Mexicana (2), 5 (1960), pp. 102-119.

[31] T. Kailath : Linear systems. Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632.

[32] H. Khalil : Nonlinear Systems. Macmillan Publishing Company New York, Maxwell Macmillan Canada Toronto, Maxwell Macmillan international New York Oxford Singa- pore Sydney.

[33] A. A. Kolesnikov : Analytical construction of nonlinear algebraic regulators with given

invariant manifolds, Izv. Buisshix Uchevnix Savedenii, Electromexanica, No. 3, 1987, pp.

100-109. See also : ibid No. 5, pp. 58-66.

[34] P.V. Kokotovic, H.J. Sussmann : A positive real condition for global stabilization of non-

linear systems. Systems & Control Letters 13 (1989) 125-133.

[35] A.A. Krasovsky : A new solution to the problem of a control system analytical design. Automatica, Vol.7, pp. 45-50, 1971.

[36] M. Krstic, I. Kanellakopoulos, P. Kokotovic : Nonlinear and adaptive control design. John Wiley & Sons, New York, 1995.

[37] J.Kurzweil : On the inversion of Lyapunov’s second theorem on stability of motion. Am.Math.Soc.Transl.,Ser.2,24:19-77,1956.

[38] E. Lee, L. Markus : Foundations of Optimal Control Theory. The SIAM Series in Applied Mathematics.

[39] K.K. Lee, A. Arapostathis : Remarks on smooth feedback stabilization of nonlinear sys-

tems. Systems & Control Letters 10 (1988), 41-44.

[40] S. Lefschetz : Differential equations: Geometric theory. Dover. 1977.

[41] W. Lin : Input saturation and global stabilization by output feedback for affine systems. Proceeding of the 33rd IEEE conference on decision and control. December 1994.

[42] W. Liu, Y. Chitour, E. Sontag : Remarks on Finite Gain Stabilizability of Linear Systems

Subject to Input Saturation. Proceedings of the 32rd IEEE conference on decision and

control. December 1993.

[43] N. G. Lloyd : Degree theory. Cambridge university press. London, New York, Melbourne. [44] Z. Lin : Global and semi-global control problems for linear systems subject to input satura-

tion and minimum-phase input-output linearizable systems. Washington state university,

Decembre 1993.

[45] Z. Lin : Global Stabilization and Restricted Tracking for Linear Systems Subject to Input

and Measurement Saturation - A Chain of Integrators Case. Proceedings of the 1995

American Control Conference, pp. 2488-2492, 1995.

[46] R. Marino, I. Kanellakopoulos, P. Kokotovic : Adaptative Tracking for Feedback Lineariz-

able SISO Systems. Proceedings of the 28th Conference on Decision and Control. Tampa,

Florida. Decembre 1989.

[47] R. Marino, P. Tomei : Nonlinear Control Design. Prentice Hall, London, New York, Toronto, Sydney, Tokyo, Singapore, Madrid, Mexico City, Munich.

[48] P. Martin : Contribution `a l’´etude des syst`emes diff´erentiellement plats. Th`ese de doctorat. Ecole des mines de Paris. D´ecembre 1992.

[49] P. Martin, S. Devasia and B. Paden : A different look at output tracking : control of a

[50] F.Mazenc, L. Praly : Adding an integration and Global asymptotic stabilization of feedfor-

ward systems. Submitted for publication in IEEE Transactions on Automatic control.

[51] F. Mazenc, L. Praly, and W. P. Dayawansa, Global stabilization by output feedback : Ex-

amples and Counter-Examples. Systems & Control Letters 23 (1994) 119-125.

[52] F. Mazenc, L. Praly, Adding an integration and global asymptotic stabilization of feedfor- ward systems, Proceed. 33rd IEEE Conference on Decision and Control, December 1994. [53] R.Outbib and G.Sallet, Stabilizability of the angular velocity of a rigid body revisited.

Systems & Control Letters 18 (1992) 93-98.

[54] J.B. Pomet, L. Praly : A result on robust boundedness. Systems & Control Letters 10 (1988) 83-92.

[55] L. Praly, Lyapunov design of a dynamic output feedback for systems linear in their unmea-

sured state components. Nolcos 92.

[56] L. Praly, G. Bastin, J.-B. Pomet, Z.P. Jiang, Adaptive stabilization of non linear systems. in Foundations of Adaptive Control, Kokotovic P.V., Ed., Springer-Verlag, Berlin, 1991. [57] L. Praly, Z.-P. Jiang, Stabilization by output feedback for systems with ISS inverse dynam-

ics, Systems & Control Letters 21 (1993) 19-33.

[58] E.P. Ryan, Adaptive stabilization of multi-input nonlinear systems, Int. J. Robust and Nonlinear Control. Vol. 3, 169-181 (1993).

[59] E.P. Ryan, N.J. Buckingam, On asymptotically stabilizing feedback control of bilinear sys-

tem. IEEE transaction on control, vol as, 28 no.8, august 1983.

[60] A. Saberi, P. V. Kokotovic, H. J. Sussmann, Global stabilization of partially linear compos-

ite systems. Siam J. Control and optimization. Vol. 28 , No 6 , pp. 1491−1503 , November

1990.

[61] Z. Lin, A. Saberi : Robust Semi-Global Stabilization of Minimum-Phase Input-Output Lin-

earizable Systems via Partial State and Output Feedback To appear in IEEE Transactions

on Automatic Control.

[62] L.M Silverman, H.E. Meadows : Controllability and observability in time varying linear

systems. SIAM J. Control, vol.5, no.1, 1967.

[63] E.D. Sontag : Mathematical Control Theory. Deterministic Finite Dimensional Systems. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong. [64] E.D. Sontag : A ’ universal ’ construction of Artstein’ s theorem on nonlinear stabilization.

Systems & Control Letters 13 (1989) 117-123.

[65] E.D. Sontag : Remarks on stabilization and input-to-state stability. Proceedings of the

28th Conference on Decision and Control, 1376-1378, December 1989.

[66] E.D. Sontag : Feedback stabilization of nonlinear systems. in Robust control of Linear

Systems and Nonlinear Control. M.A Kaashoek, J.H. van Schuppen, A.C.M Ran, Ed..

[67] H.J. Sussmann : Limitations on the Satabilizability of Globally Minimum Phase Systems. IEEE Transactions on automatic control, Vol.35, No.1,january 1990.

[68] E.D. Sontag, H.J. Sussmann : Nonlinear output feedback design for linear systems with

saturating controls. Proceeding of the 29th IEEE conference on decision and control. De-

cember 1990.

[69] H.J. Sussmann, P.V.Kokotovic : The Peaking Phenomenon and the Global Stabilization of

Nonlinear Systems. IEEE Transactions on automatic control, Vol.36, No.4april 1991.

[70] H. Sussmann, E.D. Sontag, Y. Yang : A General Result on the Stabilization of Linear

Systems Using Bounded Controls. IEEE Transactions on automatic control, Vol.39, No.12,

December 1994.

[71] H.M. Tai : Equivalent characterizations of detectability and stabilizability for a class of

linear time-varying systems. Systems & Control Letters 8(1987) : 425−428. North-Holland.

[72] A. Teel : Using Saturation to Stabilize a Class of Single-Input Partially Linear Composite

Systems. Proceedings-Actes Nolcos 92. Non linear control systems design symposium 92.

24-26 June 1992. Bordeaux-France.

[73] A. Teel : Global stabilization and restricted tracking for multiple integrators with bounded

controls. Systems & Control Letters 18(1992): 165-171.

[74] A. Teel : A nonlinear small gain theorem for the analysis of control systems with saturation. Submitted for publication in IEEE Transactions on Automatic control.

[75] A. Teel : Feedback stabilization : nonlinear solutions to inherently nonlinear problems. Memorandum No. UCB/ERL M92/65. 12 June 1992

[76] A. Teel : Semi-global stabilization of minimumphase nonlinear systems in special normal

forms. Systems & Control Letters 19(1992) 187-192

[77] A. Teel : Additional stability results with bounded controls. Proceedings of the 33rd IEEE Conference on Decision and Control, December 1994.

[78] A. Teel : A nonlinear small gain theorem for the analysis fo control systems with saturation. To appear in IEEE Transactions on Automatic Contol. 1996

[79] K.S. Tsakalis, P.A. Ioannou : Linear Time-varying Systems, Control and Adaptation. Prentice Hall, Engelwood Cliffs, New Jersey 07632.

[80] J. Tsinias : Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems 2 (1989) 343-357

[81] W.M. Wonham : On a matrix Riccati equation of stochastic control, SIAM J. Control Letters 6(1968) : 681− 697.

[82] Y. Yang : Global Stabilization of Linear Systems with Bounded Feedback, Ph. D. Thesis, Mathematics Department, Rutgers University,1993.

[83] T. Yoshizawa : Stability theory by Lyapunov’s second method. The mathematical Society of Japan, 1966.

Documents relatifs