• Aucun résultat trouvé

7

Conclusion et perspectives

7.1 Conclusions sur le travail réalisé . . . . 152

7.2 Perspectives . . . . 155

7.1. Conclusions sur le travail réalisé

Ce travail de thèse s’est inscrit dans le domaine du CND et du SHM. Le sujet se focalise

sur la sélectivité modale dans des guides d’ondes de section finie, à partir de la commande

optimisée de plusieurs éléments piézoélectriques attachés à la surface de la structure.

7.1 Conclusions sur le travail réalisé

L’état de l’art effectué recense les techniques actuelles de CND et de SHM par ondes

ultrasonores guidées. Les études existantes insistent sur l’importance de la bonne sélection

d’un mode guidé afin de détecter, localiser et quantifier un défaut de manière optimale.

Les solutions existantes pour des plaques, basées sur l’angle d’inclinaison des sondes

dé-diées, ou les techniques de phased array qui permettent une plus grande flexibilité, ne

sont pas transposables aux éléments PZT attachés à la structure. Les quelques méthodes

pour favoriser un mode guidé avec des éléments intégrés portent sur des méthodes

pas-sives basées sur la taille des émetteurs, et ne permettent pas de générer plusieurs modes

différents de manière sélective à une fréquence donnée, mais uniquement celui pour

le-quel les caractéristiques de l’émetteur sont optimisées. Plusieurs systèmes multi-éléments

considèrent les déplacements des modes propres et le principe de réciprocité, ainsi que des

éléments strictement identiques, afin de générer un profil de déplacement particulier, sans

prendre en compte les conditions de montage expérimentales. De plus, très peu de travaux

se penchent sur les modes guidés dans un guide rectangulaire, forme de structure étudiée

en particulier de ce travail.

La notion de sélectivité modale implique une quantification des amplitudes de chacun

des modes générés au sein d’un signal. Les méthodes classiques d’identification modale

à partir de mesures de déplacements, basées sur l’identification du nombre d’onde k ne

permettent pas de distinguer des modes dont le nombre d’onde est trop proche à moins

de disposer d’une distance de mesure très longue, souvent supérieure aux dimensions du

guide étudié. Dans le cadre de ce travail une méthode d’identification modale basée sur les

déplacements selon les 3 axes de direction, relevés le long d’une ligne perpendiculaire à la

direction de propagation a été mise au point. Les amplitudes obtenues sont identiques à

celles déduites à partir d’une double transformée de Fourier. À partir de cette technique,

la méthode de sélectivité modale avec plusieurs sources est mise en place. En mesurant

la matrice de transfertH qui relie les amplitudes des signaux d’excitation appliqués aux

émetteurs et les amplitudes des modes produits dans la structure, le comportement

expéri-mental de chaque émetteur est déterminé. Il prend en compte les incertitudes de montage

et des différences intrinsèques entre ces émetteurs (collage inégal, propriétés et tailles

amplitudes complexes optimales à envoyer à chaque émetteur simultanément pour générer

un mode pur.

L’application de la méthode SAFE 2D à un barreau d’aluminium de section

rectangu-laire permet le calcul des courbes de dispersion d’un tel guide, ainsi que de ses

déplace-ments modaux. Pour un même matériau et un même produit fréquence-épaisseur, il y a

plus de modes dans un barreau que dans une plaque. Les modes guidés dans un barreau

présentent des similarités avec les modes de Lamb et les modes SH dans une plaque, avec

l’apparition d’un certain nombre de nœuds de déplacement et d’énergie dans la largeur.

L’analyse des courbes de dispersion permet de déterminer une fréquence d’étude, de sorte

à limiter le nombre de modes aptes à se propager. À 30 kHz, 7 modes peuvent se propager.

Leurs nombres d’onde sont très proches, ce qui exclut l’emploi de l’analyse par

transfor-mée de Fourier, et donc démontre l’importance de l’identification modale mise en place.

La simulation 3D de la génération d’ondes à partir de PZT collés à la surface d’un guide

d’aluminium confirme la propagation des modes déterminés avec la méthode SAFE 2D, et

valide l’estimation modale proposée. La sélectivité modale à l’aide de 8 éléments est

dé-montrée pour chacun des modes. Expérimentalement la génération des modes est permise

par les éléments piézoélectriques collés à la surface, et l’identification modale est rendue

possible par mesure des composantes du déplacement avec un vibromètre laser 3D. Les

modes antisymétriques sont tous générés de manière pure avec la barrette de PZT collée,

mais pas les modes de type S et SH. Ceci peut être dû à la taille des piézoélectriques qui

n’est pas optimisée pour générer ces modes, de même que leurs modes de vibration, qui

transmettent principalement à la plaque des déplacements normaux et non dans le plan

du barreau. La génération sélective de modes sous forme de trains d’ondes pour les modes

antisymétriques fonctionne bien de manière expérimentale, et permet la détection et la

localisation d’une masse couplée à la surface du guide pour simuler un défaut. La

locali-sation par rapport aux émetteurs est déduite du temps de vol en considérant les vitesses

de groupe du mode incident et des modes réfléchis. Le mode incident peut présenter des

nœuds d’énergie dans la largeur du guide. Si le défaut est situé à la même position qu’un

nœud, il n’y a aura pas d’écho réfléchi par le défaut, alors qu’un défaut situé à la même

position qu’un ventre d’énergie du mode incident peut réfléchir un ou plusieurs modes.

Ces différences d’échos selon le mode incident apportent une information sur la position

transversale du défaut.

La méthodologie pour la sélectivité de mode a été transposée sur un assemblage

com-posite, consistant en 2 barreaux de matériau composite 8 plis collés entre eux sur toute la

longueur. La méthode SAFE 2D montre que les modes guidés dans un tel assemblage ont

un comportement similaire à ceux dans un barreau d’aluminium, mais les déplacements

7.1. Conclusions sur le travail réalisé

modaux présentent un déphasage dans la largeur du guide, le front d’onde ne se propage

pas de manière uniforme le long du guide. Les modes prédits par la méthode SAFE 2D sont

générés par les éléments piézoélectriques et identifiés grâce aux mesures du vibromètre.

La génération de modes purs, sous forme de signaux sinusoïdaux ou de trains d’onde, ne

fonctionne pas pour tous les modes. Des simulations 3D pourraient apporter des éléments

d’information de manière à mieux sélectionner les modes. Expérimentalement des trains

d’onde composés de modes purs ont tout de même pu être générés afin d’étudier

l’in-fluence d’un défaut de collage. Malgré la sélection qui maximise l’énergie du mode généré,

aucun écho n’est détecté provenant du défaut. Des études supplémentaires, numériques ou

expérimentales, permettraient de poursuivre ce travail en testant d’autres positions des

sources, ou en modifiant les émetteurs (taille, polarisation).

La méthodologie est transposable à des structures de section non constante, mais avec

une zone qui se comporte comme un guide d’onde. Les deux cas étudiés consistent en un

barreau d’aluminium coudé et un barreau avec une réduction de section. Ces deux

confi-gurations ont chacune fait l’objet d’une étude numérique, avec les émetteurs positionnés

sur une zone du guide différente de la zone où la génération modale pure est ciblée. Les

simulations démontrent que la sélectivité modale fonctionne en régime harmonique, et que

les modes sont effectivement purs dans la zone à contrôler. Ces résultats mettent

l’ac-cent sur l’intérêt de fonctionner avec une matrice de transfert, sans s’intéresser en détail

à l’interaction des ondes avec la zone singulière, ici le coude ou la réduction de section.

Une mise en place expérimentale est envisageable afin de corroborer les résultats de la

simulation. Une application directe de la sélectivité modale dans un guide de type

rec-tangulaire, avec des sections coudées notamment, se trouve dans la télécommunication et

la transmission d’information via un milieu mécanique, par ondes ultrasonores [147]. Des

systèmes déjà au point permettent de transmettre de l’information sous forme de bitsvia

des ondes ultrasonores guidées. En développant un système basé sur une multiplicité de

l’information contenue dans plusieurs modes dont l’amplitude est calibrée, il serait possible

de communiquer plus d’information plus rapidement.

Des études numériques sur une portion de rail de chemin de fer mesurant 2 m de long,

en régime harmonique à 13 kHz, en disposant 11 éléments PZT sur un seul côté du rail,

per-mettent la sélectivité modale de différents modes guidés. Des simulations supplémentaires

permettraient de quantifier la sensibilité de ces modes guidés sur des défauts typiques

(fis-sures, corrosion...) situés à différents endroits de la structure. Une telle étude permettrait

de démontrer l’avantage de pouvoir sélectionner un mode en particulier, spécifiquement

sensible à un défaut, et avec un flux de puissance confiné dans une zone du rail en

par-ticulier. Des études expérimentales sont envisageables, mais l’identification modale doit

être modifiée par rapport à celle employée dans les simulations, puisque la mesure des

déplacements, en pratique, ne peut être effectuée qu’en surface et sur une partie limitée

du rail. La sélectivité modale est réalisable dans des structures à géométrie complexe qui

présentent un fort intérêt industriel.

Documents relatifs