• Aucun résultat trouvé

CHAPITRE 5 DISCUSSION ET CONCLUSIONS GÉNÉRALES

5.2 Conclusions générales

Mon doctorat a contribué à la compréhension des mécanismes écologiques responsables de la capacité des organismes à s'adapter à leur milieu. Bien entendu, les interactions montrées à la Figure 1 ne représentent qu’un sous-ensemble des relations possibles entre l’environnement, les forces évolutives et l’ajustement des populations face à des changements environnementaux. De nombreux questionnements persistent, qui représentent autant d’éléments potentiels de recherches futures nous permettant d’améliorer notre compréhension des dynamiques évo-évolutives au sein de ce système d ’étude. Par exemple, le signal apparent de divergence adaptative entre populations de chêne blanc et de chêne vert en Corse pourrait être confirmé par des tests de comparaison des niveaux de différenciation génétique adaptative

(Qst) et des Fst obtenus à l'aide de marqueurs moléculaires neutres, des valeurs de Qst

supérieures au Fstindiquant une divergence adaptative des populations sur les traits (Merilà et

Cmokrak, 2001). De telles analyses nous permettraient de déterminer de façon plus formelle si la structure de populations observée en Corse est le résultat de pressions de sélection divergentes, ou simplement des effets de la dérive génique. De plus, dans un environnement hétérogène tel que celui retrouvé en Corse, tant la présence de flux génique et que de pressions de sélection divergentes peuvent favoriser l’évolution de la plasticité phénotypique (Crispo et

al., 2008). Il serait intéressant d ’approfondir l’étude des mécanismes affectant la présence et la

magnitude de la plasticité phénotypique, par exemple en déterminant la présence de sélection sur la plasticité, ainsi que la relation entre l’environnement et ces pressions de sélection, et ce sur un plus large éventail de traits phénotypiques d’intérêt.

Également, en continuité à mon projet de doctorat, une exploration plus poussée des facteurs causaux de la variabilité interindividuelle des patrons de plasticité au sein des populations de D-Rouvière et E-Muro pourrait infirmer ou confirmer notre hypothèse de spécialisation des individus sur différents types de ressources. Des analyses d'isotopes stables, par exemple, pourraient révéler si les mésanges au sein de ces populations se spécialisent sur des ressources alimentaires différentes (i.e. Hobson et Clark, 1992), ou sont nés au sein d'habitats différents (Hobson et a l, 2004). Aussi, des développements récents et en cours dans le domaine de la

génomique offriraient l’opportunité de déterminer quels gènes sont responsables de la variabilité phénotypique observée, apportant ainsi une compréhension plus fine des mécanismes contribuant à l’adaptation des populations en milieu naturel (van Bers et al.

2012).

De façon plus générale, le domaine de la biologie évolutive bénéficierait de la conduite d'un plus grand nombre d'études effectuées sur plusieurs populations d'une même espèce dans des habitats hétérogènes. En effet, bien que l'étude de la plasticité phénotypique et du potentiel adaptatif des populations soit intéressante en soi, la grande étendue de la variabilité de ces patrons en milieu naturel rend difficile la généralisation des résultats obtenus sur une seule population. La réplication de ces études sur plusieurs populations permet d'avoir une compréhension encore plus globale de l'étendue de la variabilité du potentiel adaptatif des populations en milieu naturel. De plus, une attention particulière devrait être apportée à la quantification des paramètres écologiques des populations sur lesquelles sont effectuées des études en biologie évolutive, afin d'améliorer notre compréhension des effets de l'environnement sur l'évolution des populations. Finalement, bien que nous ayons vu que l'environnement affecte la capacité des populations à répondre aux changements de leur environnement, ce dernier peut être rétroactivement affecté par les réponses plastiques et génétiques des populations (Pelletier et al., 2009). L'exploration de ces dynamiques éco- évolutives nous permettrait de mieux comprendre les mécanismes qui génèrent et maintiennent la grande diversité du monde qui nous entoure.

BIBLIOGRAPHIE

Ahola, M.P., Laaksonen, T., Eeva, T., and Lehikoinen, E. (2009). Great tits lay increasingly smaller clutches than selected for: a study o f climate- and density-related changes in reproductive traits. J Anim Ecol 7 8 ,1298-1306.

Banbura, J., Blondel, J., de Wilde-lambrechts, H., Galan, M.J., and Maistre, M. (1994). Nestling diet variation in an insular Mediterranean population o f blue tits Parus caeruleus - effects of years, territories and individuals. Oecologia 100,413-420.

van Bers, N.E M., Santure, A.W., van Oers, K., de Cauwer, I., Dibbits, B.W., Mateman, C., Crooijmans, R.P.M.A., Sheldon, B.C., Visser, M.E., Groenen, M.A.M., and Slate, J. (2012). The design and cross-population application of a genome-wide SNP chip for the great tit

Parus major. Mol Ecol Res 1 2 ,753-770

Blondel, J., Dias, P.C., Maistre, M., and Perret, P. (1993). Habitat heterogeneity and life- history variation of Mediterranean blue tits {Parus caeruleus). Auk 110, 511-520.

Blondel, J., Perret, P., Dias, P.C., and Lambrechts, M.M. (2001). Is phenotypic variation o f blue tits {Parus caeruleus L.) in Mediterranean mainland and insular landscapes adaptive? Genet Sel Evol 33, S121 -S 139.

Blondel, J., Thomas, D.W., Charmantier, A., Perret, P., Bourgault, P., and Lambrechts, M.M. (2006). A thirty-year study o f phenotypic and genetic variation of blue tits in Mediterranean habitat mosaics. Bioscience 56, 661-673.

Blue Tit {Cyanistes caeruleus). British Trust for Ornithology, [accès le 2 novembre 2012],

Disponible à : http://blxl.bto.org/birdfacts/results/bobl4620.htm.

Both, C., Artemyev, A.V., Blaauw, B., Cowie, R.J., Dekhuijzen, A.J., Eeva, T., Enemar, A., Gustafsson, L., Ivankina, E.V., Jërvinen, A., et al. (2004). Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc B 271, 1657-1662.

Bulmer, M.G. (1972). Multiple niche polymorphism. Am Nat 106 254-257.

Caizergues, A., Ratti, O., Helle, P., Rotelli, L., Ellison, L., and Rasplus, J. Y. (2003). Population genetic structure o f male black grouse {Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 1 2 ,2297-2305.

Carroll, S.P., Hendry, A.P., Reznick, D.N., and Fox, C.W. (2007). Evolution on ecological time-scales. Funct Ecol 21, 387-393.

Charmantier, A., Kruuk, L.E.B., Blondel, J., and Lambrechts, M.M. (2004). Testing for microevolution in body size in three blue tit populations. J Evol Biol 17, 732-743.

Charmantier, A., and Garant, D. (2005). Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B 2 7 2 ,1415-1425.

Charmantier, A., McCleery, R.H., Cole, L.R., Perrins, C., Kruuk, L.E.B., and Sheldon, B.C. (2008). Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800-803.

Chenoweth, S.F., Rundle, H.D., and Blows, M.W. (2010). The contribution o f selection and genetic constraints to phenotypic divergence. Am Nat 1 7 5 ,186-196.

Chown, S.L., and Terblanche, J.S. (2006) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 3 3 ,50-152.

Crispo, E. (2008). Modifying effects o f phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol, 21, 1460-1469.

Czesak, M.E., and Fox, C.W. (2003). Evolutionary ecology o f egg size and number in a seed beetle: Genetic trade-off differs between environments. Evolution 5 7 ,1121-1132.

Darwin, C. (1859). On the origin of species by means o f natural selection, or the preservation of favoured faces in the struggle for life (London: John Murray).

Davis, M.B., and Shaw, R.J. (2001). Range shifts and adaptive responses to quartemary climate change. Science 292,673-679.

Davis, M.B., Shaw, R.J., and Etterson, J.R. (2005). Evolutionary responses to changing climate. Ecology 8 6 ,1704-1714.

Dhondt, A.A., Adriaensen, F., Matthysen, E., and Kempenaers, B. (1990). Nonadaptive clutch sizes in tits. Nature 348, 723-725.

Dias, P.C., and Blondel, J. (1996). Local specialization and maladaptation in the Mediterranean blue tit (Parus caeruleus). Oecologia 107, 79-86.

Dingemanse, N.J., Van der Plas, F., Wright, J., Réale, D., Schrama, M., Roff, D.A., Van der Zee, E., and Barber, I. (2009). Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc B 27<5,

1285-1293.

Endler, J.A. (1986). Natural selection in the wild (Princeton: Princeton University Press). Estes, S., and Arnold, S.J. (2007). Resolving the paradox o f stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat 169, 227-244.

Etterson, J.R. (2004). Evolutionary potential of Chamaecrista fasciculata in relation to climate change. 1. Clinal patterns o f selection along an environmental gradient in the great plains. Evolution 5 8 ,1446-1458.

Falconer, D.S. and Mackay, T.F.C. (1996). Introduction to quantitative genetics (Harlow: Longman).

Fisher, R.A. (1930). The genetical theory of natural selection (Oxford: Oxford University Press).

Garant D., Kruuk, L.E.B., Wilkin, T.A., McCLeery, R.H., and Sheldon, B.C. (2005). Evolution driven by differential dispersal within a wild bird population. Nature 433, 60-65.

Garant, D., Forde, S.E., and Hendry, A.P. (2007a). The multifarious effects o f dispersal and gene flow on contemporary adaptation. Funct Ecol 2 1 ,434-443.

Garant, D., Kruuk, L.E.B., McCleery, R.H., and Sheldon, B.C. (2007b). The effects of environmental heterogeneity on multivariate selection on reproductive traits in female great tits. Evolution 6 1 ,1546-1559.

Garant, D., Hadfield, J.D., Kruuk, L.E.B., and Sheldon, B.C. (2008). Stability o f genetic variance and covariance for reproductive characters in the face o f climate change in a wild bird population. Mol Ecol 17, 179-188.

Gebhardt-Henrich, S.G., and Van Noordwijk, A.J. (1991). Nestling growth in the Great tit .1. heritability estimates under different environmental conditions. J Evol Biol 4, 341-362.

Gerlach, G., and Musolf, K. (2000). Fragmentation of landscape as a cause for genetic subdivision in bank voles. Cons Biol 1 4 ,1066-1074.

Ghalambor, C.K., McKay, J.K., Carroll, S.P., and Reznick, D.N. (2007). Adaptive versus non- adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 2 1 ,394-407.

Gibbs, H.L., and Grant, P.R. (1987). Oscillating selection on Darwins finches. Nature 327, 511-513.

Gienapp, P., Teplitsky, C., Alho, J.S., Mills, J.A., and Merilâ, J. (2008). Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17, 167-178.

Grant, P.R., and Grant, B.R. (1995). Predicting Microevolutionary Responses to Directional Selection on Heritable Variation. Evolution 49, 241 -251.

Hendry, A.P., and Kinnison, M.T. (1999). Perspective: The pace of modem life: Measuring rates of contemporary microevolution. Evolution 53, 1637-1653.

Hendry, A.P., Wenburg, J.K., Bentzen, P., Volk, E.C., and Quinn, T.P. (2000). Rapid evolution of reproductive isolation in the wild: Evidence from introduced salmon. Science 290, 516-518. Hendry, A.P., and Taylor, E.B. (2004). How much of the variation in adaptive divergence can be explained by gene flow? An evaluation using lake-stream stickleback pairs. Evolution 58, 2319-2331.

Hobson, K.A., and Clark, R.G. (1992). Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. Condor 94, 181-188.

Hobson, K.A., Bowen, G.J., Wassenaar, L.I., Ferrand, Y., and Lormee, H. (2004). Using stable hydrogen and oxygen isotope measurements o f feathers to infer geographical origins of migrating European birds. Oecologia 141,477-488.

Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hoang, A., Hill, C.E., Beerli, P., and Kingsolver, J.G. (2001). Strength and tempo of directional selection in the wild. Proc Natl Acad Sci USA 9 8 ,9157-9160.

Hoffmann, A.A., and Merilâ, J. (1999). Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14, 96-101.

Holderegger, R., and Wagner, H.H. (2008). Landscape genetics. BioScience 5 8 ,199-207.

Houle, D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130, 195-204.

Huber, H., Kane, N.C., Heschel, M.S., von Wettberg, E.J., Banta, J., Leuck, A.M., and Schmitt, J. (2004). Frequency and microenvironmental pattern o f selection on plastic shade- avoidance traits in a natural population of Impatiens capensis. Am Nat 163, 548-563.

Husby, A., Nussey, D.H., Visser, M.E., Wilson, A.J., Sheldon, B.C., and Kruuk, L.E.B. (2010). Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus

major) populations. Evolution 6 4 ,2221-2237.

de Jong, G. (2005). Evolution of phenotypic plasticity: patterns of plasticity and the emergence o f ecotypes. New Phytol 166, 101—117.

Jordan, M.A., and Snell, H.L. (2008). Historical fragmentation o f islands and genetic drift in populations of Galapagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 17,

1224-1237.

Kawecki, T.J., and Ebert, D. (2004). Conceptual issues in local adaptation. Ecol Lett 7, 1225- 1241.

Keyghobadi, N., Roland, J., and Strobeck, C. (2005). Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14, 1897-1909.

Kim, S-Y., Sanz-Aguilar, A., Minguez, E., and Oro, D. (2012). Small-scale spatial variation in evolvability for life-history traits in the storm petrel. Biol J Linn Soc 106,439-446.

Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., Hoang, A., Gibert, P., and Beerli, P. (2001). The strength o f phenotypic selection in natural populations. Am Nat 157,245-261.

Kruuk, L.E.B. (2004). Estimating genetic parameters in natural populations usine the “animal model”. Phil Trans R Soc B 359, 873-890.

Kruuk, L.E.B., Slate, J., and Wilson, A.J. (2008). New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Ann Rev Ecol Evol Syst 39, 525-548.

Lampei, C., and K. Tielbôrger. (2010). Evolvability of between-year seed dormancy in populations along an aridity gradient. Biol J Linn Soc 1 0 0 ,924-934.

Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314-334.

Lande, R. (1979). Quantitative genetic analysis o f multivariate evolution, applied to brain: body size allometry. Evolution 3 3 ,402-416

Leinonen, T., O'hara, R.B., Cano, J.M., and Merilâ, J. (2008). Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21, 1-17.

Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends Ecol Evol 17, 183-189.

Levins, R. (1968). Evolution in changing environments. (Princeton: Princeton University Press).

Lynch, M., and Walsh, B. (1998). Genetics and analysis of quantitative traits (Sunderland: Sinauer).

Manel, S., Schwartz, M.K., Luikart, G., and Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18, 189-197.

Martin, J.L. (1991). Patterns and significance of geographical variation in the blue tit {Parus

caeruleus). Auk 108, 820-832.

Martinez-Cruz, B., Godoy, J.A., and Negro, J.J. (2007). Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16, 477-486.

McAdam, A.G., and Boutin, S. (2004). Maternal effects and the response to selection in red squirrels. Proc R Soc B 271, 75-79.

Merilâ, J., and Cmokrak, P. (2001). Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 1 4 ,892-903.

Merilâ, J., Sheldon, B.C., and Kruuk, L.E.B. (2001). Explaining stasis: mi'croevolutionary studies in natural populations. Genetica 112,199-222.

Muséum national d'Histoire naturelle [Ed]. 2003-2012. Inventaire national du Patrimoine naturel [accès le 8 mars 2012]. Disponible à: http://inpn.mnhn.fr.

Nosil, P. (2008). Spéciation with gene flow could be common. Mol Ecol 17, 2103-2106.

Nosil, P. (2009). Adaptive population divergence in cryptic color-pattem following a reduction in gene flow. Evolution 63, 1902-1912.

Nosil, P., and Crespi, B.J. (2004). Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking-sticks. Evolution 5 8 ,102-112.

Nussey, D.H., Clutton-Brock, T.H., Albon, S.D., Pemberton, J., and Kruuk, L.E.B. (2005a). Constraints on plastic responses to climate variation in red deer. Biol Lett 1, 457-460.

Nussey, D.H., Clutton-Brock, T.H., Elston, D.A., Albon, S.D., and Kruuk, L.E.B. (2005b). Phenotypic plasticity in a maternal trait in red deer. J Anim Ecol 7 4 ,387-396.

Nussey, D.H., Postma, E., Gienapp, P., and Visser, M.E. (2005c). Selection on heritable phenotypic plasticity in a wild bird population. Science 3 10,304-306.

Nussey, D.H., Wilson, A.J., and Brommer, J.E. (2007). The evolutionary ecology o f individual phenotypic plasticity in wild populations. J Evol Biol 20, 831-844.

Pelletier, F., Reale, D., Garant, D., Coltman, D.W., and Festa-Bianchet, M. (2007). Selection on heritable seasonal phenotypic plasticity of body mass. Evolution 6 1 ,1969-1979.

Pelletier, F., Garant, D., and Hendry, A.P. (2009) Eco-evolutionary dynamics: an introduction. Phil Trans R Soc B 364, 1483-1489.

Pigliucci, M. (2001). Phenotypic plasticity: beyond nature and nurture. (Baltimore: Johns Hopkins University Press).

Porlier, M., Garant, D., Perret, P., and Charmantier, A. (2012) Habitat-linked genetic differentiation in the blue tit Cyanistes caeruleus. J Hered doi:10.1093/jhered/ess064.

Price, T.D., Qvamstrôm, A., and Irwin, D.E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proc R Soc B 270, 1433-1440.

Przybylo, R., Sheldon, B.C., and Merilâ, J. (2000). Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69, 395-403.

Reimchen, T.E., and Nosil, P. (2002). Temporal variation in divergent selection on spine number in threespine stickleback. Evolution 56,' 2472-2483.

Reznick, D.N., and Ghalambor, C.K. (2001). The population ecology o f contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112, 183-198.

Riechert, S.E. (1993). Investigation o f potential gene flow limitation of behavioral adaptation in an aridlands spider. Behav Ecol Sociobiol 32, 355-363.

Rieseberg, L.H., Widmer, A., Amtz, A.M., and Burke, J.M. (2002). Directional selection is the primary cause of phenotypic diversification. Proc Natl Acad Sci USA 99, 12242-12245.

Rundle, H.D., Chenoweth, S.F., and Blows, M.W. (2008). Comparing complex fitness surfaces: Among-population variation in mutual sexual selection in Drosophila serrata. Am Nat 171,443-454.

Rodriguez, R.L. (2012). Grain o f environment explains variation in the strength o f genotype x environment interaction. J Evol Biol 2 5 ,1897-1901.

Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766-1774.

Schwarz, D., Matta, B.M., Shakir-Botteri, N.L., and McPheron, B.A. (2005). Host shift to an invasive plant triggers rapid animal hybrid spéciation. Nature 436, 546-549.

Siepielski, A.M., DiBattista, J.D. and Carlson, S.M. (2009). It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 1 2 ,1261-1276.

Sinervo, B., and McAdam, A.G. (2008). Maturational costs of reproduction due to clutch size and ontogenetic conflict as revealed in the invisible fraction. Proc R Soc B 275, 629-638. Springate, D.A., Scarcelli, N., Rowntree, J., and Kovers, P.X. (2011). Correlated response in plasticity to selection for early flowering in Arabidopsis thaliana. J Evol Biol 24, 2280-2288. Steams, S.C. (1989). The evolutionary significance o f phenotypic plasticity. Bio-Science 39, 436-445.

Stockwell, C.A., Hendry, A.P., and Kinnison, M.T. (2003). Contemporary evolution meets conservation biology. Trends Ecol Evol 18, 94-101.

Storfer, A., Murphy, M.A., Evans, J.S., Goldberg, C.S., Robinson, S., Spear, S.F., Dezzani, R., Delmelle, E., Vierling, L., and Waits, L.P. (2007). Putting the 'landscape' in landscape genetics. Heredity 9 8 ,128-142.

Thomas, D.W., Blondel, J., Perret, P., Lambrechts, M.M. and Speakman, J.R. (2001). Energetic and fitness costs o f mismatching resource supply and demand in seasonally breeding birds. Science 291,2598-2600.

Travis, J. (1994). Evaluating the adaptive role o f morphological plasticity. Ecological Morphology, Wainwright, P.C. and Reilly, S.M. (Chicago: University o f Chicago Press), pp. 99-122.

Turelli, M., Barton, N.H., and Coyne, J.A. (2001). Theory and spéciation. Trends Ecol Evol

1 6 ,330-343.

Visser, M.E., Van Noordwijk, A.J., Tinbergen, J.M. and Lessells, C.M. (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc B 265, 1867-1870.

Walsh, B., and Blows, M.W. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view o f adaptation. Ann Rev Ecol Evol Syst 40, 41-59.

West-Eberhard, M.J. (2003). Developmental plasticity and evolution. (New York: Oxford University Press).

Widen, B., Andersson, S., Rao, G.Y., and Widen, M. (2002). Population divergence of genetic (co)variance matrices in a subdivided plant species, Brassica cretica. J Evol Biol 15, 961-970. Willi, Y., Van Buskirk, J., Schmid, B., and Fischer, M. (2007). Genetic isolation o f fragmented populations is exacerbated by drift and selection. J Evol Biol 20, 534-542.

Wilson, A.J., Pilkington, J.G., Pemberton, J.M., Coltman, D.W., Overall, A.D.J., Byme, K.A., and Kruuk, L.E.B. (2005). Selection on mothers and offspring: Whose phenotype is it and does it matter? Evolution 5 9 ,451-463.

Wilson, A.J., Pemberton, J.M., Pilkington, J.G., Coltman, D.W., Mifstid, D.V., Clutton-Brock, T.H., and Kruuk, L.E.B. (2006). Environmental coupling o f selection and heritability limits evolution. Plos Biol 4, 1270-1275.

Wilson, S., Norris, D.R., Wilson, A.G. and Arcese, P. (2007). Breeding experience and population density affect the ability o f a songbird to respond to future climate variation. Proc R Soc B 274,2539-2545.

Zandt, H., Strijkstra, A., Blondel, J., and van Balen, H. (1990). Food in two Mediterranean Blue Tit populations; Do differences in caterpillar availability explain differences in timing o f the breeding season? Population biology o f passerine birds, An integrated approach, Blondel, J., Gosier, A., Lebreton, J.D., and McCleery, R. (Berlin:Springer-Verlag), pp. 145-155.

Documents relatifs