• Aucun résultat trouvé

Partie I : Synthèse Bibliographique

I.3. Conclusion

Les lipases appartiennent à la famille des enzymes lipolytiques qui catalysent l’hydrolyse d’un grand nombre d’esters d’acides gras plus particulièrement les triacylglycérols. Elles sont également des cibles thérapeutiques intéressantes pour le traitement de diverses pathologies comme l’obésité. L’une des approches développées pour lutter contre ces maladies est l’inhibition de ces enzymes par des composés naturels et/ou de synthèses.

C’est dans ce contexte que nous nous sommes intéressés à appliquée cette approche théorique de modélisation pour étudier l’effet inhibiteur d’un composé naturel qui est le (-)- Epigallocatechin-3-gallate (EGCG), un polyphenol naturel présent dans le thé vert et qui appartient à la famille des flavonoïdes. Cette molécule a été testée dans ce travail comme inhibiteur des lipases digestives.

Au-delà de l’aspect d’inhibition de la lipase digestive, les recherches concernant l’étude des interactions mises en jeu entre la lipase et l’inhibiteur, plusieurs méthodes de recherche utilisant l’ordinateur ont été crées. Ces méthodes ont été développées pour aider les médecins chimistes à comprendre les interactions, au niveau moléculaire, qui est la base de la plupart des mécanismes biologiques.

Parmi les méthodologies employées, celle de docking moléculaire est de plus en plus utilisée. La présentation de la technique de docking sera développée dans le chapitre 2.

- 52 -

Références Bibiographiques

1: Faber K. Biotransformations in Organic Chemistry, 4th Edition, Ed. Springer-Verlag

Berlin New York 2000: p 5.

2: Gotor-Fernandez V, Brieva R, GotoV R.J. Mol. Catal B : Enzymatic 2006; (40: 111-120.

3 : Patrick F, Jacqueline D, Philippe T. Les lipases sont des hydrolases atypiques : principales

caractéristiques et applications. Biotechnologie, Agronomie, Société et Environnement, 2008 ; 12(2): 119-130.

4: Carey MC, Small DM, Bliss CM. Lipid digestion and absorption. The annual review of

physiology, 1983; 45: 651-677.

5: Favé G, Coste TC, Armand M. Physicochemical properties of lipids: new strategies to

manage fatty acid bioavailability. Cellular and Molecular Biology, 2004; 50: 815-831.

6 : Fave G, Peyrot J, Hamosh M, Armand M. Digestion des lipides alimentaires: intérêt de la

lipase gastrique humaine. Cahiers de Nutrition et Diététique, 2007; 42(4): 183.

7: https://www.google.com/patents/WO1998030588A1

8: Tcheriatchoukine D. L’obésité: découverte récentes relatives aux mécanismes moléculaires

à l’origine de nouvelles stratégies thérapeutiques. Thèse de doctorat, Universite Henri Poincare – Nancy 2010.

9: Sanchez-Moreno C. Review: methods used to evaluate the free radical scavenging activity

in foods and biological systems. Food Science and Technology International, 2002; 8 (3): 121-137.

10: Marc F, Davin A, Deglène-Benbrahim L, Ferrand C. Méthodes d’évaluation du potentiel

antioxydant dans les aliments. Erudit, M/S: medicine sciences, 2004; 20(4): 458-463.

11: Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. Journal of

Agricultural and Food Chemistry, 2005; 53: 1841-1856.

12: Chebil L. Acylation des flavonoïdes par les lipases de Candida antarctica et de

Pseudomonas cepacia : études cinétique, structurale et conformationnelle. Thèse de doctorat Institut national polytechnique de lorraine 2006.

- 53 -

13 : Nutra news. Science, Nutrition, Prévention et Santé. Édité par la Fondation pour le libre

choix. www.nutranews.org.

14: Chu C, Deng J, Man Y, and Yili Q. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments.Biomedical Research International, 2017; 20(17): 5615-5647.

15: Dr rath. Substances phytobiologiques (Phytobiologicals) 5ème Partie:L’Epigallocatéchine

gallate (EGCG). Lettre d’information sur la Santé 2010, partie 5. www.phytobiologicals.com

16: Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid molecules

2002.

17: De Oliveira EB. Simulation moléculaire appliquée à l’acétylation de flavonoïdes

catalysés par des lipases : influence des structures de la lipase et des flavonoïdes sur la régiosélectivité de la bioconversion. Thèse de doctorat d’université : Procédés biotechnologiques et alimentaires. Nancy Institut National Polytechnique de Lorraine. France 2009: 187.

18: Min KJ, Taeg KK. Anticancer effects and molecular mechanisms of epigallocatechin-3-

gallate. Department of Immunology. School of Medicine, Keimyung University Daegu, Korea 2014: 16-24.

19: Santiago SL, Osorio SL, Neri JR, Carvalho RM, Toledano M. effect of the flavoid

Epigallocatechin-3-gallate on resin-dentin bond. The journal of adhesive dentistry, 2013 ; 15 : 535-40.

20: Kyoung-Jin M, Taeg-Kyu K. Anticancer effects and molecular mechanisms of

epigallocatechin-3-gallate. Department of Immunology, School of Medicine, Keimyung University Daegu, Korea 2014: 16-24.

21: Yang XR, Ye CX, Xu JK, Jiang YM. Simultaneous Analysis of Purine Alkaloids and

Catechins in Camellia Sinensis, Camellia Ptilophylla and Camellia Assamica Var. Kucha by HPLC. Food Chemistry, 2007; 100: 1132–1136.

22: David Keighley (ed.), The origins of Chinese civilization, Berkeley, University of

California Press, 1983 Li Hui-li « The domestication of plants in China: ecological considerations » p. 21-63.

- 54 -

23: Guang-Jian D, Zhiyu Z, Xiao-Dong W, Chunhao Yu, Tyler C, Chun-Su Y, Chong-Zhi W.

Epigallocatechin Gallate (EGCG) is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients, 2012; 4:1679-1691.

24: Schneider R, Lüdde T, Töpper S, Imming P. Tee gegen den Lärm der Welt

Pharmazeutische Zeitung Online, Ausgabe 2008.

25: Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and

bioavailability. The American Journal of Clinical Nutrition, 2004; 79: 727–747.

26: Sweetman S C. Martindale the Complete Drug Reference. Thirty-third Edition, London-

Chicago : Pharmaceutical Press, 2002: 1681.

27: Nkhili EZ. Polyphenols de l’alimentation: extraction, interaction avec les ions de fer et du

cuivre, oxidation et pouvoir antioxydant. Diplôme de doctorat. Université d’Avignon- France et Université Cadi Ayyad-Marrakech 2009.

28: Philip Denton, Chris Rostron. Pharmaceutics: the science of medicine design. Oxford

university press 2013: 90.

29: Sarni-Manchado P, Cheynier V. Les polyphénols en agroalimentaire. Lavoisier,ed Tec &

Doc 2006.

30: Dangles O. The physic-chemical propreties of polyphenols. Agro-food industry Hi-tech

Lavoisier 2006, 29-50.

31: Boubekri C. Etude de l’activité antioxydante des polyphénols extraits de Solanum

melongena par des techniques électrochimiques. Thèse de doctorat. Université Mohamed Khider – Biskra 2014.

32: Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van-Poel B, Pieters L, Vlietinck AJ,

Van Den BD. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxyde scavengers. Journal of natural products, 1998; 61: 71-76.

33: Foti M, Piattelli M, Baratta MT, Ruberto G. Flavonoids, coumarins, and cinnamic acids as

antioxidants in a micellar system. Structure-activity relationship. Journal of Agricultural and Food, 1996; 44: 497-501.

34: Hussain T. Green tea constituent epigallocatechin-3-gallate selectively inhibits Cox-2

without affecting Cox-1 expression in human prostate cancer cells. International Journal of Cancer, 2005; 113: 660–669.

- 55 -

35: Pezzato E, Sartor L, Dell'Aica I, Dittadi R, Gion M, Belluco C, Lise M, Garbisa S.

Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP- 2 activation are inhibited by (-) Epigallocatechin-3-gallate. International Journal of Cancer, 2004; 112(5): 787-792.

36: Lee H. Protective effect of green tea polyphenol EGCG against neuronal damage and bain

edema after unilateral cerebral ischemia in gerbils. Journal of Neuroscience Research , 2004; 77(6): 892-900.

37: Darch E. l’alimentation idéale des jeunes. Edition lanore, Francois-Xavier sorlot, Paris

2010: 143.

38: Bolling BW, Chen CY, Blumbeng JB. Tea and health: preventive and therapeutic

usefulness in the elderly? Current Opinion in Clinical Nutrition and Metabolic Care, 2009; 12(1): 42-48.

39: Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK.

Epigallocatechin gallate a constituent of green tea, represses hepatic glucose production. The Journal of Biological Chemistry, 2002; 277 (38): 34933-34940.

40: Kreydiyyeh SI. Tea extract inhibits intestinal absorption of glucose and sodium in rats.

Comparative Biochemistry and Physiology Part C. Pharmacol. Toxico Endocrine, 1994; 108: 359-365.

41: Widlansky ME. Acute EGCG supplementation reverses endothelial dysfunction in

patients with coronary artery disease. Journal of American College of Nutrition, 2007; 26(2): 95-102.

42: Khurana S, Krishnan V, Hollingsworth A, Piche M, Tai TC. Polyphenols: Benefits to the

Cardiovascular System in Health and in Aging Nutrients 2013; 5, 3779-3827.

43: Linden G, Transformation des Produits Alimentaires par les Enzymes, Ed. Techniques

Ingénieur, 1998.

44 : Morak M , Schmidinger H , Riesenhuber G , Rechberger GN. , Kollroser M , Haemmerle

G, Zechner R , Kronenberg F , Hermetter A. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Molecular & Cellular Proteomics, 2012; 11(12): 1777–1789.

- 56 -

45: Jensen RG, Galluzzo DR, Bush VJ. Selectivity is an important characteristic of lipases

(acylglycerol hydrolases). Biocatalysis, 1990; 3: 307-316.

46: Muralider RV, Chiromamilla RR, Marchan R, Ramachandran VN, Ward OP, Nigan P.

Understanding lipase stereo selectivity. World journal of microbiology & biotechnology, 2002; 18: 81-97.

47: Schmid RD, Verger R. Lipases: Interfacial enzymes with attractive applications. Angew.

Chem. Int. Ed 1998; 37: 1608–1633.

48: Khan FI, Lan D , Durrani R, Weiqian H, Zexin Z, Yonghua W. The lid domain in lipase:

Structural and functional determinant of enzymatic properties. Frontier in Bioengineering and Biotechnology, 2017; 5: 16.

49: Van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C. Interfacial

activation of the lipase-procolipase complex by mixed micelles revealed by X-Ray crystallography. Nature, 1993; 362(6423): 814-820.

50: Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg

J, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 1991; 351: 491-494.

51: Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, Patkar

SA. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry, 2000; 39: 15071-15082.

52: Derewenda ZS, Derewenda U, Dodson GO. The crystal and molecular structure of the

Rhizomucor miehei triacylglyceride lipase at 1.9 A° resolution. Journal of Molecular Biology, 1992; 227:818-839.

53: Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M..

Insights into interfacial activation from an open structure of Candida rugosa lipase. Journal of Molecular Biology, 1993; 268: 12843-12847.

54: Guillaume N. Dynamique fonctionnelle des protéines: études d’une lipase et d’une

protéine A de la membrane externe de bactérie. thése de doctorat. Université Toulouse 2015.

55: Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington

SJ, Silman I, Schrag J. The alpha/beta hydrolase fold. Protein Engineering, 1992; 5(3): 197- 211.

- 57 -

56: Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystal-structure of Haloalkane

Dehalogenase: An enzyme to detoxify Halogenated. Alkanes. Embo Journal, 1991; 10(6): 1297-1302.

57: Egloff MP, Sarda L, Verger R, Cambillau C, Van Tilbeurgh H. Crystallographic study of

the structure of colipase and of the interaction with pancreatic lipase. Protein Science, 1995; 4: 44-57.

58: Schrag JD, Li YG, Wu S, Cygler M. Ser-His-Glu triad forms the catalytic site of the

lipase from Geotrichum candidum. Nature, 1991; 351: 761-764.

59: Bornscheuer UT. Microbial carboxyl esterases: classification. Properties and application

in biocatalysis. FEMS Microbiology Reviews, 2002; 26(1):73-81.

60: Cygler M, Schrag JD. Structure and conformational flexibility of Candida rugosa lipase.

Biochimica Biophysica Acta, 1999; 1441: 205-214.

61: Dodson G, Wlodawer A. Catalytic triads and their relatives. Trends Biochemistry Science,

1998; 23(9): 347-352.

62: Blow DM, Birktoft JJ, Hartley BS. Role of a buried acid group in the mechanism of

actionof chymotrypsin. Nature, 1969; 221: 334-337.

63: Beer H, Wohlfahrt G, McCarthy JE, Schomburg D, Schmid RD. Analysis of the catalytic

mechanism of a fungal lipase using computer-aided design and structural mutants. Protein, 1996; 6: 507-517.

64: Sarda L, Desnuelle P. Actions of pancreatic lipase on esters in emulsions. Biochimica

Biophysica Acta, 1958; 30(3): 513-521.

65: Bousset-Risso EA. Limited proteolysis of porcine pancreatic lipase. Lability of the Phe

335 - Ala 336 bond towards chimotrypsin. FEBS LETTERS, 1985; 182(2): 323-326.

66: Abousalham C. Chaillan B. Kerfelec E. Foglizzo C. Chapus Uncoupling of catalysis and

colipase binding in pancreatic lipase by limited proteolysis. Protein Engineering Design and Selection, 1992, 5(1): 105-111.

67: Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C. Fontecilla-Camps JC. Lipase

- 58 -

tetraethylene glycol monooctyl ether complex". Journal of Biological Chemistry, 1996; 271(30): 18007-18016.

68: Delorme V. De Mycobacterium tuberculosis à la protéomique chimique: Utilisation et

greffage d’inhibiteurs de lipases et carboxylestérases. Thèse de doctorat. Université Paul- Cézanne. Marseille 2012.

69 : Sias B, Ferrato F, Grandval P, Lafont D, Boullanger P, De Caro. Human pancreatic

lipase-rela-ted protein 2 is a galactolipase. Biochemistry, 2004. 43(31), 10138-10148.

70: Fickers P, Destain J, Thonart P. Les lipases sont des hydrolases atypiques : principales

caractéristiques et applications. Biotechnology Agronomy Society and Environment Environ, 2008; 12(2): 119-130.

71: Gargouri Y, Moreau H, Verger R. Gastric lipases: biochemical and physiological

studies. Biochimica Biophysica Acta, 1989; 1006(3): 255-271.

72 : Gargouri Y, Pieroni G, Rivière C, Lowe PA, Saunière JF, Sarda L, Verger R. Importance

of human gastric lipase for intestinal lipolysis: an in vitro study. Biochimica Biophysica Acta, 1986; 879(3): 419-423.

73: N'Goma, J. C. B, Amara S, Dridi K, Jannin V, Carrière F. . Understanding the lipid-

digestion processes in the GI tract before designing lipid-based drug-delivery systems. Therapeutic Delivery, 2012; 3(1): 105-124.

74: Hamosh M. Lingual and gastric lipases: Their role in fat digestion Boston. CRC Press,

1990; 6(6):421-8.

75: Joliff G, Vaganay S, Legay C, Benicourt C. Secretion of an active recombinant dog

gastric lipase from baculovirus-infected insect cells. Biotechnology Letters, 1998; 20(7): 697- 702.

76: Gruber V, Berna PP, Arnaud, T, Bournat, P, Clement C, Mison D, Olagnier B, Philippe

L, Theisen M, Baudino S, Benicourt C, Cudrey C, Bloes C, Duchateau N, Dufour S, Gueguen C, Jacquet S, Ollivo C, Poncetta C, Zorn N, Ludevid D, Van Dorsselaer A, Verger R, Doherty A, Merot B, Danzin C. Large-scale production of a therapeutic protein in transgenic tobacco plants: effect of subcellular targeting on quality of a recombinant dog gastric lipase. Molecular Breeding, 2001; 7(4): 329-340.

- 59 -

77: Canaan S, Dupuis L, Rivière M, Faessel K, Romette J-L, Verger R, Wicker-Planquart C.

Purification and interfacial behavior of recombinant human gastric lipase produced from insect cells in a bioreactor. Protein Expression and Purification, 1998; 14(1): 23-30.

78: Roussel A, Canaan S, Egloff MP, Rivière M, Dupuis L, Verger R, Cambillau C.).

"Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. Journal of Biological Chemistry,1999; 274(24): 16995-17002.

79: Roussel A, Miled N, Berti-Dupuis L, Rivière M, Spinelli S, Berna P, Gruber V, Verger R,

Cambillau C. Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor. Journal of Biological Chemistry, 2002; 277(3): 2266-2274.

80: Miled N, Roussel A, Bussetta C, Berti-Dupuis L, Rivière M, Buono G, Verger R,

Cambillau C, Canaan S. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study. Biochemistry, 2003; 42(40): 11587-11593.

81: -Planquart C, Canaan S, Rivière M, Dupuis L. Site-directed removal of N-glycosylation

sites in human gastric lipase. European Journal of Biochemistry, 1999; 262(3): 644-651.

82: Aloulou A, Rodriguez JA, Fernandez S, Van Oosterhout D, Puccinelli D; Carriere F.

Exploring the specific features of interfacial enzymology based on lipase studies. Biochimica and Biophysica Acta-Molecular and Cell Biology of Lipids, 2006; 1761(9): 995- 1013.

83: Chahinian H, Snabe T, Attias C, Fojan P, Petersen SB, Carrière F. "How gastric lipase,

an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry, 2006; 45(3): 993-1001.

84: Nacim ZOUARI, Lipase digestive d’un animal primitif, le scorpion : purification,

caractérisation biochimique et localisation cellulaire, thèse doctorat l’Ecole Nationale d’Ingénieurs de Sfax 2006.

- 60 -

Documents relatifs