• Aucun résultat trouvé

Cette étude bibliographique a permis de faire le point sur les matériaux composites thermoplastiques thermostables composés d’une matrice thermoplastique et de renfort fibres de carbone. Les caractéristiques des polymères thermoplastiques et notamment du PEEK ont été abordées ainsi que la fabrication et les propriétés des fibres de carbone, notamment des fibres HexTow® IM7 fournies par Hexcel et utilisées par notre partenaire industriel dans

41 | P a g e

Cette synthèse a également mis en évidence la notion d’interphase et d’ensimage thermoplastique. La caractérisation de l’interphase fibre/matrice est quelque chose de compliqué et qui demande plusieurs analyses différentes pour avoir une vue globale sur cette interphase. Malgré le peu de littérature disponible sur l’ensimage thermoplastique, ce chapitre a pu révéler que les ensimages thermoplastiques existants n’étaient pas encore suffisamment adaptés à un usage industriel. Ce travail de thèse présente donc un attrait industriel important.

42 | P a g e

Références Chapitre 1

1. Marston, C.; Gabbitas, B.; Adams, J.; Marshall, P.; Galiotis, C., Measurement of stress concentration around fibre breaks in carbon-fibre/epoxy-resin composite tows. Composites Science and technology 1997, 57, 913-923.

2. Marston, C.; Galiotis, C., On the failure of unidirectional carbon-epoxy composites. Part I : effect of fibre sizing upon filament fracture and damage evolution. Journal of materials science 1998, 33, 5311-5325.

3. Bangarusampath, D. S.; Ruckdäschel, H.; Altstädt, V.; Sandler, J. K. W.; Garray, D.; Shaffer, M. S. P., Rheology and properties of melt-processed poly(ether ether ketone)/multi- wall carbon nanotube composites. Polymer 2009, 50 (24), 5803-5811.

4. Beehag, A.; Ye, L., Role of cooling pressure on interlaminar fracture properties of commingled CF/PEEK composites. Composites Part A 1996, 27A (3), 175-182.

5. Bismarck, A.; Hofmeier, M.; Dörner, G., Effect of hot water immersion on the performance of carbon reinforced unidirectional poly(ether ether ketone) (PEEK) composites : Stress rupture under end-loaded bending. Composites Part A 2007, 38, 407-426.

6. Denault, J.; Vu-Khanh, T., Crystallization and fiber/matrix interaction during the molding of PEEK/carbon composites. Polymer Composites 1992, 13 (5), 361-371.

7. Diaz, J.; Rubio, L., Developments to manufacture structural aeronautical parts in carbon fibre reinforcedthermoplastic materials. Journal of materials processing technology 2003, 143-144, 342-346.

8. Dίez-Pascual, A. M.; Naffakh, M.; Gómez, M. A.; Marco, C.; Ellis, G.; González- Domίnguez, J. M.; Ansón, A.; Martίnez, M. T.; Martίnez-Rubi, Y.; Simard, B.; Ashrafi, B., The influence of a compatibilizer on the thermal and mechanical properties of PEEK/carbon nanotubes composites. Nanotechnology 2009, 20 (31).

9. Fracasso, R.; Rink, M.; Pavan, A.; Frassine, R., The effects of strain-rate and temperature on the interlaminar fracture toughness of interleaved PEEK/CF composites. Composites Science and technology 2001, 61, 57-63.

10. Frassine, R.; Rink, M.; Pavan, A., Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites : II. Rate and temperature dependence in unidirectional PEEK/carbon fibre laminates. Composites Science and Technology 1996, 56, 1253- 1260.

11. Fujihara, K.; Huang, Z.-M.; Ramakrishna, S.; Hamada, H., Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites. Composites Science and Technology 2004, 64, 2525-2534.

12. Gao, S.-L.; Kim, J.-K., Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion. Composites Part A 2000, 31, 517-530.

13. Gao, S.-L.; Kim, J.-K., Cooling rate influences in carbon fibre/PEEK composites. Part III: impact damage performance. Composites Part A 2001, 32, 775-785.

14. Gao, S.-L.; Kim, J.-K., Correlation Among Crystalline Morphology of PEEK, Interface Bond Strength, and In-Plane Mechanical Properties of Carbon/PEEK Composites. Journal of Applied Polymer Science 2002, 84, 1155-1167.

15. Jeng, C.-C.; Chen, M., Flexural failure mechanisms in injection-moulded carbon fibre/PEEK composites. Composites Science and Technology 2000, 60, 1863-1872.

16. Kim, J.-K., Optimization of processing conditions and mechanical properties and applications of carbon/PEEK composites. In Second International Bhurban Conference on Applied Sciences and Technology, Bhurban Pakistan, 2003.

17. Lee, Y.; Porter, R. S., Crystallization of poly(etheretherketone) (PEEK) in carbon fiber composites. Polymer engineering and science 1986, 26 (9), 633-639.

43 | P a g e

18. Li, T. Q.; Zhanga, M. Q.; Zeng, H. M., Strong interaction at interface of carbon fiber reinforced aromatic semicrystalline thermoplastics. Polymer 1999, 40, 4307-4313.

19. Li, T. Q.; Zhang, M. Q.; Zeng, H. M., Structure aspects of interfacial stress transfer in a fiber/thermoplastic composite. Journal of Materials science letters 2000, 19, 837-839.

20. Lustiger, A., Morphological Aspects of the Interface in the PEEK-Carbon Fiber System. Polymer Composites 1992, 13 (5), 408-412.

21. Mahieux, C. A., Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry: the example of a carbon-fiber reinforced thermoplastic flywheel. Composite Structures 2001, 52, 517-521.

22. Matthams, T. J.; Clyne, T. W., Mechanical properties of long-fibre thermoplastic composites with laser drilled microperforations. 1. Effect of perforations in consolidated material. Composites Science and Technology 1999, 59, 1169-1180.

23. Phillips, R.; Glauser, T.; Månson, J.-A. E., Thermal Stability ofPEEK/Carbon Fiber in Air and its Influence on Consolidation. Polymer Composites 1997, 18 (4), 500-508.

24. Sarasua, J. R.; Pouyet, J., recycling effects on microstructure and mechanical behaviour of PEEK short carbon-fibre composites. Journal of materials science 1997, 32, 533-536. 25. Selzer, R.; Friedrich, K., Mechanical properties and failure behaviour of carbon fibre- reinforced polymer composites under the influence of moisture. Composites Part A 1997, 28A, 595-604.

26. Uematsu, Y.; Kitamura, T.; Ohtani, R., Delamination behavior of a carbon-fiber- reinforced thermoplastic polymer at high temperature. Composites Science and Technology 1995, 53, 333-341.

27. Sendijarevic, I.; McHugh, A. J.; Orlicki, J. A.; Moore, J. S., The influence of alkyl end- groups on the miscibility of hyperbranched polymers with polyolefins. Polymer engineering and science 2002, 42 (12), 2393-2400.

28. Guehenec, M. Etude de nanocomposites réalisés par extrusion bi-vis : cas d'un polymère thermostable et d'une charge nanométrique. Université de Pau et des Pays de l'Adour, 2012.

29. Kemmish, D., Update on the technology and applications of polyaryletherketones. iSmithers: Shawbury, UK, 2010.

30. Pascal, J., PEKK Un thermoplastique haute performance ultra polyvalent de la famille PAEK. Innov'Days: Dijon, 2012.

31. Rose, J. B.; Staniland, P. A. Thermoplastic aromatic polyetherketones. GB4320224, 1982.

32. Attwood, T. E.; Dawson, P. C.; Freeman, J. L.; Hoy, L. R. J.; Rose, J. B.; Staniland, P. A., Synthesis and properties of polyaryletherketones. Polymer 1981, 22 (8), 1096-1103.

33. Gharda, K. H.; Trivedi, P. D.; Vakil, U. M.; Limaye, S. C. Melt processible polyether ether ketone polymer. 2004.

34. Ueda, M.; Sato, M., Synthesis of aromatic poly(etherketones). Macromolecules 1987, 20 (2675-2678).

35. Cheng, S. Z. D.; Cao, M.-Y.; Wunderlich, B., Glass transition and melting behavior of poly(oxy-1,4-phenoxy-1,4-phenylenecarbonyl-1,4-phenylene). Macromolecules 1986, 19, 1868- 1876.

36. Huo, P.; Cebe, P., Temperature-dependent relaxation of the crystal-amorphous interphase in poly(ether ether ketone). Macromolecules 1992, 25, 902-909.

37. Nicodeau, C. Modélisation du soudage en continu de composites à matrice thermoplastique. Ecole Nationale Supérieure d'Arts et Métiers, Paris, 2005.

38. Basset, D. C.; Olley, R. H.; Raheil, I. A. M. A., On crystallization phenomena in PEEK. Polymer 1988, 29, 1745-1754.

44 | P a g e

39. Blundell, D. J.; Crick, R. A.; Fife, B.; Peacock, J.; Keller, A.; Waddon, A., Spherulitic morphology of the matrix of thermoplastic PEEK/carbon fibre aromatic polymer composites. Journal of materials science 1989, 24, 2057-2064.

40. Jonas, A.; Legras, R., Crystallization and chain adsorption of poly(etheretherketone) in discontinuous pitch-derived carbon fiber composite. Polymer Composites 1993, 14 (6), 491- 502.

41. Corporation, N. R. D. The production of carbon fibres. GB1110791, 1964.

42. Corporation, N. R. D. Production of carbon fibres and compositions containing said fibres. US3412062A, 1968.

43. Oberlin, A., Carbonization and graphitization. Carbon 1984, 22 (6), 521-541.

44. Vautard, F. Caractérisation et optimisation des interfaces dans les composites polymérisés sous rayonnement ionisant. Université de Haute-Alsace, Mulhouse, 2006.

45. Asloun, E. M.; Nardin, M.; Schultz, J., Stress transfer in single-fibre composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility. Journal of material science 1989, 24, 1835-1844.

46. Bergeret, A.; Krawczak, P. Liaison renfort/matrice - Définition et caractérisation Techniques de l'ingénieur [Online], 2006.

47. Vautard, F. Caractérisation et optimisation des interfaces dans les matériaux composites polymérisés sous rayonnement ionisant. Université de Haute Alsace, 2006.

48. Martin, A. Optimisation de fibres de carbone pour leur application à des composites hautes-performances à matrice organique polymérisée par voie radicalaire sous rayonnement ionisant. Université de Reims Champagne-Ardenne, 2014.

49. Bourban, P.-E.; Carlsson, L.; Mercier, J. P.; Manson, J.-A. E., Matériaux composites à matrice organiques : constituants, procédés, propriétés. Presses polytechniques et universitaires romandes: 2004.

50. Ning, N.; Fu, S.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q., Realizing the enhancement of interfacial interaction in semi-crystalline polymer/filler composites via interfacial crystallization. Progress in polymer science 2012, 37, 1425-1455.

51. Quan, H.; Li, Z.-M.; Yang, M.-B.; Huang, R., On transcristallinity in semi-crystalline polymer composites. Composites Science and Technology 2005, 65, 999-1021.

52. Hachmi, B. D.; Vu-Khanh, T., Crystallization mechanism in PEEK/carbon fiber composites. Journal of thermoplastic composite materials 1997, 10, 488-501.

53. Verdeau, C. Influence des conditions d'élaboration sur la zone interfaciale des matériaux composites hautes performances à matrice thermoplastique. Ecole Nationale Supérieure des Mines de Paris, 1988.

54. Thomas, C. Etude des mécanismes d'endommagement des composites fibre de carbone/matrice polyamide : application à la réalisation de réservoirs de stockage de gaz sous haute pression de type IV. Ecole Nationale Supérieure des Mines de Paris, 2011.

55. Iroh, J. O.; Yuan, W., Surface properties of carbon fibres modified by electrodeposition of polyamic acid. Polymer 1996, 37 (18), 4197-4203.

56. Kashikar, S. P.; Brandt, L. J. L. Glass fiber product for making perform products. WO 2008147746, 2008.

57. Giraud, I. Elaboration d'ensimages thermoplastiques thermostables : Influence sur le comportement mécanique des composites PEEK/Fibres de carbone. Université Paul Sabatier, Toulouse, 2011.

58. Bergerat, J.-M.; Giraud, I.; Dantras, E.; Perez, E.; Lacabanne, C. Novel stable aqueous dispersions of high performance thermoplastic polymer nanoparticles and their uses as film generating agents. US2011/0300381 A1, 2011.

59. Giraud, I.; Franceschi-Messant, S.; Perez, E.; Lacabanne, C.; Dantras, E., Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation. Applied Surface Science 2013, 266, 94-99.

45 | P a g e

60. Broyles, N. S.; Verghese, K. N. E.; Davis, S. V.; Li, H.; Davis, R. M.; Lesko, J. J.; Riffle, J. S., Fatigue performance of carbon fibre/vinyl ester composites: the effect of two dissimilar polymeric sizing agents. Polymer 1998, 39 (15), 3417-3424.

61. Broyles, N. S.; Chan, R.; Davis, R. M.; Lesko, J. J.; Riffle, J. S., Sizing of carbon fibres with aqueous solutions of poly(vinyl pyrrolidone). Polymer 1998, 39 (12), 2607-2613.

62. Liu, Z.; Soong, H.-C. Thermoplastique composite and its manufacturing. WO 2014078499, 2014.

63. Tadepalli, R.; Asrar, J.; Shooshtari, K.; Gleich, K. F. Sizing compositions and sized products for thermoplastic composites. EP 2607400, 2013.

64. Dalmolin, C.; Canobre, S. C.; Biaggio, S. R.; Rocha-Filho, R. C.; Bocchi, N., Electropolymerization of polyaniline on high surface area carbon substrates. Journal of Electroanalytical Chemistry 2005, 578, 9-15.

65. Lin, B.; Sureshkumar, R.; Kardos, J. L., Electropolymerization of pyrrole on PAN- based carbon fibers: experimental observations and a multiscale modeling approach. Chemical Engineering Science 2001, 56, 6563-6575.

66. Shibata, M.; Fang, Z.; Yosomiya, R., Miscibility and crystallization behavior of poly(ether ether ketone)/poly(ether imide) blends. Journal of Applied Polymer Science 2001, 80, 769-775.

67. Sheth, C. K., Polyetherimide-polyetheretherketone blands and miscibility. Annual Technical Conference - Society of Plastics Engineers 2010, 68, 890-894.

68. Driouich, I. M. Vieillissement humide du polyetherimide. Ecole Nationale Supérieure des Arts et Métiers, Paris, 2000.

69. Li, M.; Rouaud, O.; Poncelet, D., Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of Pharmaceutics 2008, 363, 26- 39.

70. Guerrier, B.; Bouchard, C.; Allain, C.; Bénard, C., Drying kinetics of polymer films. AIChE Journal 1998, 44, 791-793.

71. Vrentas, J. S.; Vrentas, C. M., Predictive methods for self-diffusion and mutual diffusion coefficients in polymer-solvent systems. European Polymer Journal 1998, 34, 793-803. 72. Kim, J. S.; Lee, K. R., Prediction of mutual diffusion coefficient in polymer solution. Polymer 2000, 41, 8441-8448.

73. Doumenc, F.; Guerrier, B., Estimating polymer/solvent diffusion coefficient by optimization procedure. AIChE Journal 2001, 47, 984-993.

74. Hsu, J.-P.; Lin, S.-H., Diffusivity of solvent in a polymer solution-expansive free volume effect. European Polymer Journal 2005, 41, 1036-1042.

75. Freytag, T.; Dashevsky, A.; Tillman, L.; Hardee, G. E.; Bodmeier, R., Improvement of the encapsulation efficiency of oligonucleotide-containing biodegradable microspheres. Journal of controlled release 2000, 102, 313-332.

76. Sah, H., Ethyl formate - alternative dispersed solvent useful in preparing PLGA microspheres. International Journal of Pharmaceutics 2000, 195, 103-113.

77. Sah, H., Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres. Journal of controlled release 1997, 47, 233-245.

78. Herrmann, J.; Bodmeier, R., Biodegradable somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. European Journal of Pharmaceutics and Biopharmaceutics 1998, 45, 75-82.

79. André-Abrant, A.; Taverdet, J. L.; Jay, J., Microencapsulation par évaporation de solvant. European Polymer Journal 2001, 37, 955-967.

80. Berchane, N. S.; Jebrail, F. F.; Carson, K. H.; Rice-Ficht, A. C.; Andrews, M. J., About mean diameterand size distributions of poly(lactide-co-glycolide) (PLG) microspheres. Journal of microencapsulation 2006, 23, 539-552.

46 | P a g e

81. Yang, C. Y.; Tsay, S. Y.; Tsiang, R. C. C., An enhanced process for encapsulating aspirin in ethylcellulose microcapsules by solvent evaporation in an O/W emulsion. Journal of microencapsulation 2000, 17, 269-277.

82. Jalil, R.; Nixon, J. R., Microencapsulation using poly(D,L-lactic acid) I: effect of preparative variables on the microcapsule characteristics and release kinetics. Journal of microencapsulation 1990, 7, 229-244.

83. Jeffery, J.; Davis, S. S.; O'Hagan, D. T., Preparation and degradation of poly(lactide-ci- glycolide) microspheres. Journal of controlled release 1991, 77, 169-175.

84. Jeffery, H.; Davis, S. S.; O'Hagan, D. T., The preparation and characterization of poly(lactide-co-glycolide) microparticles: II. the entrapment of a model protein using a (water-in-oil)-in water emulsion solvent evaporation technique. Pharmaceutical Research 1993, 10, 362-368.

85. Sansdrap, P.; Moës, A. J., Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(D,L-lactide-co-glycolide) microspheres. International Journal of Pharmaceutics 1993, 98, 157-164.

86. Carrio, A.; Schwach, G.; Coudane, J.; Vert, M., Preparation and degradation of surfactant-free PLAGA microspheres. Journal of controlled release 1995, 37, 113-121.

87. Yang, Y. Y.; Chung, T. S.; Ng, N. P., Morphology, drug distribution and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double emulsion solvent extraction/evaporation method. Biomaterials 2001, 22, 231-241. 88. Torres, D.; Boado, L.; Blanco, D.; Vila-Jato, J. L., Comparison between aqueous and non-aqueous solvent evaporation methods for microencapsulation of a drug-resin complexes. International Journal of Pharmaceutics 1998, 173, 171-182.

89. Gabor, F.; Ertl, B.; Wirth, M.; Mallinger, R., Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics. Journal of microencapsulation 1999, 16, 1-12.

90. Mateovic, T.; Kriznar, B.; Bogataj, M.; Mrhar, A., The influence of stirring rate on biopharmaceutical properties of Eudragit RS microspheres. Journal of microencapsulation 2002, 19, 29-36.

91. Li, W.-I. Mechanism and mathematical modeling of microsphere formation. University of Kentucky, 1994.

92. Miyazaki, Y.; Onuki, Y.; Yakou, S.; Takayama, K., Effet of temperature-increase rate on drug release characteristics of dextran microspheres prepared by emulsion solvent evaporation process. International Journal of Pharmaceutics 2006, 324, 144-151.

93. Freitas, S.; Merkle, H. P.; Gander, B., Microencapsulation by solvent extraction/evaporation: rewieving the state of the art of microsphere preparation process technology. Journal of controlled release 2004, 102, 313-332.

94. Izumikawa, S.; Yoshioka, S.; Aso, Y.; Takeda, Y., Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. Journal of controlled release 1991, 15, 133-140.

95. Chung, T.-W.; Huang, Y.-Y.; Liu, Y.-Z., Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres . International Journal of Pharmaceutics 2001, 212, 161-169.

96. Chung, T.-W.; Huang, Y.-Y.; Tsai, Y.-L.; Liu, Y.-Z., Effects of solvent evaporation rate on the properties of protein-loaded PLLA and PDLLA microspheres fabricated by emulsion- solvent evaporation process. Journal of microencapsulation 2002, 19, 463-471.

97. Meng, F. T.; Ma, G. H.; Liu, Y. D.; Qiu, W.; Su, Z. G., Microencapsulation of bovine hemoglobin with high bio-activity and high entrapment efficiency using a W/O/W double emulsion technique. Colloids and Surfaces B: Biointerfaces 2004, 33, 177-183.

47 | P a g e

98. Atkins, T. W.; Peacock, S. J.; Yates, D. J., Incorporation and release of vanco-mycin from poly(D,L-lactide-co-glycolide) microspheres. Journal of microencapsulation 1998, 15, 31- 44.

49 | P a g e

CHAPITRE 2 :

FORMULATION DE 1ERE

GENERATION A LECHELLE SEMI-

INDUSTRIELLE

« Ils ne savaient pas que c’était impossible, alors ils l’ont fait. » Mark Twain, écrivain américain.

50 | P a g e

Sommaire Chapitre 2

1. Préparation et optimisation de la formulation d’ensimage ... 51