• Aucun résultat trouvé

A clinically used PET tubular mesh was coated with a 10 µm thick layer of PLGA, containing 40 µg of ATV per mg of mesh. The optimal release profile obtained demonstrated a fast release of 40 % of the drug over 3 days, followed by a sustained release over 40 days. The mesh was successfully coated externally with a layer of ATV-free PLCL, at the cost of an acceptable decrease of elasticity. This

CHAPTER V - Design and characterization of a perivascular PLGA coated perivascular mesh sustaining the release of atorvastatin for the prevention of restenosis.

125 mesh will be tested in an ex vivo model of human saphenous vein graft exposed to arterial pressure [12, 13]. The mesh should undergo γ-ray sterilization prior testing. The unidirectional drug release as well as the the ability of the ATV-releasing tubular prosthesis to decrease intimal hyperplasia should be further evaluated.

Credits

For this project, conception is credited to Dr. F. Delie, Dr. O. Jordan, Prof. J.-A. Haefliger, Dr. F.

Saucy and I. Mylonaki. Experimental design, data analysis and interpretation has been achieved by I. Mylonaki supervised by Dr. F. Delie, Dr O. Jordan and Prof. Allémann. Part of the data acquisition was done by and Orio Trosi, as part of his master work in pharmaceutical sciences.

References

[1] Eurostat, Cardiovascular diseases statistics, European Comission, 2016.

[2] P.J. Shah, I. Gordon, J. Fuller, S. Seevanayagam, A. Rosalion, J. Tatoulis, J.S. Raman, B.F. Buxton, Factors affecting saphenous vein graft patency: clinical and angiographic study in 1402 symptomatic patients operated on between 1977 and 1999, J. Thorac. Cardiovasc. Surg. 126(6) (2003) 1972-1977.

[3] M.G. Davies, P.O. Hagen, Pathophysiology of vein graft failure: a review, Eur. J. Vasc. Endovasc. Surg.

9(1) (1995) 7-18.

[4] S.M. Schwartz, E.R. O'Brien, D. DeBlois, C.M. Giachelli, Relevance of Smooth Muscle Replication and Development to Vascular Disease, in: S.M.M. Schwartz, Robert P. (Ed.), The Vascular Smooth Muscle Cell, Academic Press, San Diego, 1995, pp. 81-139.

[5] Z.S. Galis, J.J. Khatri, Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: The Good, the Bad, and the Ugly, Circ. Res. 90(3) (2002) 251-262.

[6] J.M. Corpataux, J. Naik, K.E. Porter, N.J.M. London, The Effect of Six Different Statins on the Proliferation, Migration, and Invasion of Human Smooth Muscle Cells, J. Surg. Res. 129(1) (2005) 52-56.

[7] C. Dubuis, L. May, F. Alonso, L. Luca, I. Mylonaki, P. Meda, F. Delie, O. Jordan, S. Deglise, J.-M.

Corpataux, F. Saucy, J.-A. Haefliger, Atorvastatin-loaded hydrogel affects the smooth muscle cells of human veins, J. Pharmacol. Exp. Ther. 347(3) (2013) 574-581.

[8] I. Mylonaki, F. Strano, S. Deglise, E. Allémann, F. Alonso, J.-M. Corpataux, C. Dubuis, J.-A. Haefliger, O. Jordan, F. Saucy, F. Delie, Perivascular sustained release of atorvastatin from a hydrogel-microparticle delivery system decreases intimal hyperplasia, J. Control. Release 232 (2016) 93-102.

[9] G.S. Carella, F. Stilo, F. Benedetto, A. David, D.C. Risitano, M. Buemi, F. Spinelli, Femoro-Distal Bypass with Varicose Veins Covered by Prosthetic Mesh, J. Surg. Res. 168(2) (2011) e189-e194.

[10] E. Arvela, P. Kauhanen, A. Albäck, M. Lepäntalo, A. Neufang, F. Adili, T. Schmitz-Rixen, Initial Experience with a New Method of External Polyester Scaffolding for Infrainguinal Vein Grafts, Eur. J. Vasc.

Endovasc. Surg. 38(4) (2009) 456-462.

[11] I. Skalsky, O. Szarszoi, E. Filova, M. Parizek, A. Lytvynets, J. Maluskova, A. Lodererova, E. Brynda, V.

Lisa, Z. Burdikova, M. Capek, J. Pirk, L. Bacakova, A perivascular system releasing sirolimus prevented intimal hyperplasia in a rabbit model in a medium-term study, Int. J. Pharm. 427 (2012) 311-319.

[12] A. Longchamp, F. Alonso, C. Dubuis, F. Allagnat, X. Berard, P. Meda, F. Saucy, J.-M. Corpataux, D.

Sébastien, J.-A. Haefliger, The use of external mesh reinforcement to reduce intimal hyperplasia and preserve the structure of human saphenous veins, Biomaterials 35(9) (2014) 2588-2599.

CHAPTER V - Design and characterization of a perivascular PLGA coated perivascular mesh sustaining the release of atorvastatin for the prevention of restenosis.

126 [13] X. Berard, S. Déglise, F. Alonso, F. Saucy, P. Meda, L. Bordenave, J.-M. Corpataux, J.-A. Haefliger, Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins, J. Vasc. Surg. 57(5) (2013) 1371-1382.

[14] J.J. Elsner, M. Zilberman, Antibiotic-eluting bioresorbable composite fibers for wound healing applications: Microstructure, drug delivery and mechanical properties, Acta Biomater. 5(8) (2009) 2872-2883.

[15] S. Venkatraman, F. Boey, Release profiles in drug-eluting stents: Issues and uncertainties, J. Control.

Release 120(3) (2007) 149-160.

[16] J.J. Elsner, M. Zilberman, Novel antibiotic-eluting wound dressings: An in vitro study and engineering aspects in the dressing's design, J. Tissue Viability 19(2) (2010) 54-66.

[17] O. Guillaume, X. Garric, J.-P. Lavigne, H. Van Den Berghe, J. Coudane, Multilayer, degradable coating as a carrier for the sustained release of antibiotics: Preparation and antimicrobial efficacy in vitro, J. Control.

Release 162(3) (2012) 492-501.

[18] O. Guillaume, J.-P. Lavigne, O. Lefranc, B. Nottelet, J. Coudane, X. Garric, New antibiotic-eluting mesh used for soft tissue reinforcement, Acta Biomater. 7(9) (2011) 3390-3397.

[19] G. Acharya, K. Park, Mechanisms of controlled drug release from drug-eluting stents, Adv. Drug Deliv.

Rev. 58(3) (2006) 387-401.

[20] E. Filova, M. Parizek, J. Olsovska, Z. Kamenik, E. Brynda, T. Riedel, M. Vandrovcova, V. Lisa, L.

Machova, I. Skalsky, O. Szarszoi, T. Suchy, L. Bacakova, Perivascular sirolimus-delivery system, Int. J.

Pharm. 404(1-2) (2011) 94-101.

[21] M.-C. Chen, H.-F. Liang, Y.-L. Chiu, Y. Chang, H.-J. Wei, H.-W. Sung, A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus, J. Control. Release 108(1) (2005) 178-189.

[22] C.M. Mahoney, A.J. Fahey, A.M. Belu, Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion Mass Spectrometry, Anal. Chem. 80(3) (2008) 624-632.

[23] W.G. Sanders, P.C. Hogrebe, D.W. Grainger, A.K. Cheung, C.M. Terry, A biodegradable perivascular wrap for controlled, local and directed drug delivery, J. Control. Release 161(1) (2012) 81-89.

[24] D. Mishaly, I. Fishbein, D. Moscovitz, G. Golomb, Site-specific delivery of colchicine in rat carotid artery model of restenosis, J. Control. Release 45(1) (1997) 65-73.

[25] Z. Liu, Z. Guo, Y. Si, X. Zhang, Z. Shi, F. Chen, W. Fu, The research and preparation of a bi-layer biodegradable external sheath with directional drug release profiles for vein graft, Appl. Surf. Sci. 284 (2013) 819-825.

[26] J. Siepmann, F. Siepmann, Modeling of diffusion controlled drug delivery, J. Control. Release 161(2) (2012) 351-362.

[27] D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, J. Siepmann, How porosity and size affect the drug release mechanisms from PLGA-based microparticles, Int. J. Pharm. 314(2) (2006) 198-206.

[28] H. Gasmi, F. Siepmann, M.C. Hamoudi, F. Danede, J. Verin, J.F. Willart, J. Siepmann, Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems, Int.

J. Pharm. 514(1) (2016) 189-199.

[29] K.R. Stenmark, M.E. Yeager, K.C.E. Kasmi, E. Nozik-Grayck, E.V. Gerasimovskaya, M. Li, S.R. Riddle, M.G. Frid, The Adventitia: Essential Regulator of Vascular Wall Structure and Function, Annu. Rev. Physiol.

75(1) (2013) 23-47.

[30] R. Roeder, J. Wolfe, N. Lianakis, T. Hinson, L.A. Geddes, J. Obermiller, Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small-diameter vascular grafts, J. Biomed. Mater. Res.

47(1) (1999) 65-70.

[31] H. Kranz, N. Ubrich, P. Maincent, R. Bodmeier, Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states., J. Pharm. Sci. 89(12) (2000) 1558-1566

127