• Aucun résultat trouvé

Erfan Dabaghi Zadeh, Frej Mighri, and Denis Rodrigue

Chapitre 4- Conclusion générale

57

Conclusion générale et recommandations

Selon les investigations, les emballages plastiques alimentaires ont été un facteur significatif de l'augmentation de la pollution environnementale dans les dernières années. Donc, plusieurs efforts ont été faits pour utiliser des produits biodégradables dans les emballages alimentaires. Cependant, la production de films antimicrobiens par une technique simple et économique est un problème auquel plusieurs chercheurs se sont attaqués.

Généralement, mélanger le CS (méthode du coulage) avec des biopolymères (PLA) crée des films avec d'excellentes propriétés telles que la biodégradabilité et la résistance à l'humidité. Les films composites de CS et PLA étaient produits par la technique de coulage de la solution de mélanges correspondants dans l'acide acétique et le chloroforme. Malgré les qualités désirables du CS et PLA telles que déterminées dans la revue de littérature (la résistance à l'humidité et les hautes propriétés mécaniques du PLA ainsi que les propriétés antimicrobiennes du chitosane), il existe plusieurs inconvénients au mélange de ces solutions comme l'immiscibilité, l'incompatibilité et le manque de ductilité causés la présence de particules résiduelles dans les films finaux. D'un autre côté, la présence de particules de CS a augmenté la température de cristallisation et a diminué la résistance mécanique des films. Néanmoins, la présence de PCL et PEG est fortement appropriée pour augmenter l'adhésion et l'élongation respectivement. De plus, l'oxygène est l’une des causes principales de détérioration des aliments. Donc, des films procurant une bonne barrière à l'oxygène peuvent aider à maintenir la qualité du produit et augmenter la durée de vie des aliments.

Suite aux travaux réalisés, il serait important de les compléter en étudiant la morphologie des films composites (homogénéité, interface, taille des particules), ainsi que de faire des caractérisations supplémentaires (perméabilité au CO2 et N2, résistance à la déchirure, etc.).

58

Références

[1] I. Olabarrieta, D. Forsström, U. W. Gedde, and M. S. Hedenqvist, “Transport properties of chitosan and whey blended with poly ($\varepsilon$-caprolactone) assessed by standard permeability measurements and microcalorimetry,” Polymer

(Guildf)., vol. 42, no. 9, pp. 4401–4408, 2001.

[2] C. N. Cutter, “Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods,” Meat Sci., vol. 74, no. 1, pp. 131–142, 2006.

[3] F. Sébastien, G. Stéphane, A. Copinet, and V. Coma, “Novel biodegradable films made from chitosan and poly (lactic acid) with antifungal properties against mycotoxinogen strains,” Carbohydr. Polym., vol. 65, no. 2, pp. 185–193, 2006. [4] L. T. Sin, A. R. Rahmat, and W. Rahman, “Polylactic Acid: PLA Biopolymer

Technology and Applications, William Andrew,” Inc., London, 2012.

[5] S.-Y. Sung et al., “Antimicrobial agents for food packaging applications,” Trends

Food Sci. Technol., vol. 33, no. 2, pp. 110–123, 2013.

[6] R. Grande and A. J. F. Carvalho, “Compatible ternary blends of chitosan/poly (vinyl alcohol)/poly (lactic acid) produced by oil-in-water emulsion processing,”

Biomacromolecules, vol. 12, no. 4, pp. 907–914, 2011.

[7] C. Chen, L. Dong, and M. K. Cheung, “Preparation and characterization of

biodegradable poly (L-lactide)/chitosan blends,” Eur. Polym. J., vol. 41, no. 5, pp. 958–966, 2005.

[8] A. A. Kumar, K. Karthick, and K. P. Arumugam, “Properties of biodegradable

polymers and degradation for sustainable development,” Int. J. Chem. Eng. Appl., vol. 2, no. 3, pp. 164–167, 2011.

[9] R.-J. Müller, “Biodegradability of polymers: regulations and methods for testing,”

Biopolym. Online. Gesellschaft fur Biotechnologische Forschung mbH, Braunschweig,

pp. 365–374, 2005.

[10] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, “Biodegradability of plastics,” Int.

J. Mol. Sci., vol. 10, no. 9, pp. 3722–3742, 2009.

[11] I. Vroman and L. Tighzert, “Biodegradable polymers,” Materials (Basel)., vol. 2, no. 2, pp. 307–344, 2009.

[12] N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, and J.-E. Nava- Saucedo, “Polymer biodegradation: Mechanisms and estimation techniques--A review,” Chemosphere, vol. 73, no. 4, pp. 429–442, 2008.

[13] K. Leja and G. Lewandowicz, “Polymer Biodegradation and Biodegradable Polymers- a Review.,” Polish J. Environ. Stud., vol. 19, no. 2, pp. 255–266, 2010.

[14] L. Avérous and E. Pollet, “Biodegradable polymers,” in Environmental silicate nano-

biocomposites, Springer, 2012, pp. 13–39.

[15] B. Ghanbarzadeh and H. Almasi, “Biodegradable polymers,” Biodegrad. Sci. INTECH Open Access Publisher InTech, licensee InTech, pp. 141–186, 2013.

59

[16] P. Zhao, W. Liu, Q. Wu, and J. Ren, “Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends,” J. Nanomater., vol. 2010, pp. 4– 9, 2010.

[17] L. Xiao, B. Wang, G. Yang, and M. Gauthier, Poly (lactic acid)-based biomaterials:

synthesis, modification and applications. INTECH Open Access Publisher InTech, pp.

247–283, 2012.

[18] L. Avérous, “Biodegradable multiphase systems based on plasticized starch: a review,”

J. Macromol. Sci. Part C Polym. Rev., vol. 44, no. 3, pp. 231–274, 2004.

[19] L. V Labrecque, R. A. Kumar, V. Dave, R. A. Gross, and S. P. McCarthy, “Citrate esters as plasticizers for poly (lactic acid),” J. Appl. Polym. Sci., vol. 66, no. 8, pp. 1507–1513, 1997.

[20] O. Martin and L. Averous, “Poly (lactic acid): plasticization and properties of

biodegradable multiphase systems,” Polymer (Guildf)., vol. 42, no. 14, pp. 6209–6219, 2001.

[21] R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic acid technology,” Adv.

Mater., vol. 12, no. 23, pp. 1841–1846, 2000.

[22] D. Garlotta, “A literature review of poly (lactic acid),” J. Polym. Environ., vol. 9, no. 2, pp. 63–84, 2001.

[23] Z. Li, B. H. Tan, T. Lin, and C. He, “Recent advances in stereocomplexation of

enantiomeric PLA-based copolymers and applications,” Prog. Polym. Sci., vol. 62, pp. 22–72, 2016.

[24] D. M. Bigg, “Polylactide copolymers: effect of copolymer ratio and end capping on their properties,” Adv. Polym. Technol., vol. 24, no. 2, pp. 69–82, 2005.

[25] A. J. R. Lasprilla, G. A. R. Martinez, and B. Hoss, “Synthesis and Characterization of Poly (lactic acid) for Use in Biomedical Field,” Chem. Eng, vol. 24, pp. 985–990, 2011.

[26] S. Fehri, P. Cinelli, M.-B. Coltelli, I. Anguillesi, and A. Lazzeri, “Thermal Properties of Plasticized Poly (Lactic Acid)(PLA) Containing Nucleating Agent,” Int. J. Chem.

Eng. Appl., vol. 7, no. 2, p. 85, 2016.

[27] B. Ashok et al., “Tensile and thermal properties of poly (lactic acid)/eggshell powder composite films,”in. j. poly. and. chiralainainain., vol. 19, no. 3, pp. 245–255, 2014. [28] J.-F. Zhang and X. Sun, “Mechanical and thermal properties of poly (lactic acid)/starch

blends with dioctyl maleate,” J. Appl. Polym. Sci., vol. 94, no. 4, pp. 1697–1704, 2004. [29] F. Croisier and C. Jérôme, “Chitosan-based biomaterials for tissue engineering,” Eur.

Polym. J., vol. 49, no. 4, pp. 780–792, 2013.

[30] E. L. Johnson and Q. P. Peniston, “Utilization of shellfish waste for chitin and chitosan production,” in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL

SOCIETY, 1979, no. SEP, p. 34.

[31] P. C. Srinivasa and R. N. Tharanathan, “Chitin/chitosan—Safe, ecofriendly packaging materials with multiple potential uses,” Food Rev. Int., vol. 23, no. 1, pp. 53–72, 2007. [32] M. N. V. R. Kumar, “A review of chitin and chitosan applications,” React. Funct.

60

Polym., vol. 46, no. 1, pp. 1–27, 2000.

[33] T. A. Khan, K. K. Peh, and H. S. Ch’ng, “Reporting degree of deacetylation values of chitosan: the influence of analytical methods,” J Pharm Pharm. Sci, vol. 5, no. 3, pp. 205–212, 2002.

[34] H. K. No, S. H. Kim, S. H. Lee, N. Y. Park, and W. Prinyawiwatkul, “Stability and antibacterial activity of chitosan solutions affected by storage temperature and time,”

Carbohydr. Polym., vol. 65, no. 2, pp. 174–178, 2006.

[35] S. K. Rout, “Physicochemical, Functional and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification. LSU Historical Dissertations and Theses,” 2001.

[36] A. Tolaimate, J. Desbrieres, M. Rhazi, A. Alagui, M. Vincendon, and P. Vottero, “On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin,” Polymer (Guildf)., vol. 41, no. 7, pp. 2463–2469, 2000. [37] R. F. Weska, J. M. de Moura, L. de M. Batista, J. Rizzi, and L. A. de A. Pinto,

“Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology,” J. Food Eng., vol. 80, no. 3, pp. 749–753, 2007. [38] W. A. Bough, W. L. Salter, A. C. M. Wu, and B. E. Perkins, “Influence of

manufacturing variables on the characteristics and effectiveness of chitosan products. I. Chemical composition, viscosity, and molecular-weight distribution of chitosan products,” Biotechnol. Bioeng., vol. 20, no. 12, pp. 1931–1943, 1978.

[39] R. A. A. Muzzarelli, “Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review,” Carbohydr. Polym., vol. 84, no. 1, pp. 54–63, 2011.

[40] N. Yacob, N. Talip, M. Mahmud, N. Sani, N. Akma, and N. A. F. Samsuddin, “Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement,” J. Nucl. Relat. Technol., vol. 10, no. 1, pp. 39–44, 2013. [41] S. Honary, M. Maleki, and M. Karami, “The effect of chitosan molecular weight on

the properties of alginate/chitosan microparticles containing prednisolone,” Trop. J.

Pharm. Res., vol. 8, no. 1, pp. 53–61, 2009.

[42] M. Hasegawa, A. Isogai, and F. Onabe, “Preparation of low-molecular-weight chitosan using phosphoric acid,” Carbohydr. Polym., vol. 20, no. 4, pp. 279–283, 1993.

[43] S. Y. Park, K. S. Marsh, and J. W. Rhim, “Characteristics of different molecular weight chitosan films affected by the type of organic solvents,” J. Food Sci., vol. 67, no. 1, pp. 194–197, 2002.

[44] M. N. Moorjani, V. Achyuta, and T. Khasim, “Parameters affecting the viscosity of chitosan from prawn waste.,” J. Food Sci. Technol., vol. 12, pp. 187–189, 1975. [45] A. I. Gamzazade, A. M. Sklyar, S.-S. Pavlova, and S. V Rogozhin, “On the viscosity

properties of chitosan solutions,” Polym. Sci. USSR, vol. 23, no. 3, pp. 665–669, 1981. [46] J. Desbrieres, “Viscosity of semiflexible chitosan solutions: influence of concentration,

temperature, and role of intermolecular interactions,” Biomacromolecules, vol. 3, no. 2, pp. 342–349, 2002.

61

[47] M. R. Kasaai, J. Arul, and G. Charlet, “Intrinsic viscosity--molecular weight relationship for chitosan,” J. Polym. Sci. Part B Polym. Phys., vol. 38, no. 19, pp. 2591–2598, 2000.

[48] S. Hirano, “Production and application of chitin and chitosan in Japan,” Chitin

chitosan,(Skjak-Braek G, Anthonsesn, T., Sandford P pp 51-69, Elsevier Appl. Sci. London, UK. ISBN 1851663959, 9781851663958, 1989.

[49] H. K. No, N. Y. Park, S. H. Lee, H. J. Hwang, and S. P. Meyers, “Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu,” J. Food Sci., vol. 67, no. 4, pp. 1511–1514, 2002. [50] Y. I. Cho, H. K. No, and S. P. Meyers, “Physicochemical characteristics and functional properties of various commercial chitin and chitosan products,” J. Agric. Food Chem., vol. 46, no. 9, pp. 3839–3843, 1998.

[51] R. G. Cuero, “Antimicrobial action of exogenous chitosan.,” EXS, vol. 87, pp. 315– 333, 1999.

[52] E. C. Society and M. G. Peter, EUCHIS’99: Proceedings of the 3rd International

Conference of the European Chitin Society, Potsdam, Germany, Aug. 31-Sept. 3, 1999.

Univ. Potsdam, Univ.-Bibliothek, Publ.-Stelle, 2000.

[53] L. F. Del Blanco, M. S. Rodriguez, P. C. Schulz, and E. Agullo, “Influence of the deacetylation degree on chitosan emulsification properties,” Colloid Polym. Sci., vol. 277, no. 11, pp. 1087–1092, 1999.

[54] E. Agulló, M. S. Rodr’\iguez, V. Ramos, and L. Albertengo, “Present and future role of chitin and chitosan in food,” Macromol. Biosci., vol. 3, no. 10, pp. 521–530, 2003. [55] D. F. Kendra and L. A. Hadwiger, “Characterization of the smallest chitosan oligomer

that is maximally antifungal toFusarium solani and elicits pisatin formation inPisum sativum,” Exp. Mycol., vol. 8, no. 3, pp. 276–281, 1984.

[56] A. El Ghaouth, J. Arul, A. Asselin, and N. Benhamou, “Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer,” Mycol. Res., vol. 96, no. 9, pp. 769–779, 1992.

[57] K. Sun and Z. H. Li, “Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning.,” Express Polym. Lett., vol. 5, no. 4, pp. 342– 361, 2011.

[58] F.-L. Mi, Y.-C. Tan, H.-F. Liang, and H.-W. Sung, “In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant,” Biomaterials, vol. 23, no. 1, pp. 181–191, 2002.

[59] E. Selmer-Olsen, H. C. Ratnaweera, and R. Pehrson, “A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste,” Water Sci.

Technol., vol. 34, no. 11, pp. 33–40, 1996.

[60] F. S. Kittur, K. R. Kumar, and R. N. Tharanathan, “Functional packaging properties of chitosan films,” Zeitschrift für Leb. Und-forsch. A, vol. 206, no. 1, pp. 44–47, 1998. [61] G. L. Dotto, J. M. de Moura, T. R. S. Cadaval, and L. A. de A. Pinto, “Application of

chitosan films for the removal of food dyes from aqueous solutions by adsorption,”

62

[62] R. Muzzarelli, R. Tarsi, O. Filippini, E. Giovanetti, G. Biagini, and P. E. Varaldo, “Antimicrobial properties of N-carboxybutyl chitosan.,” Antimicrob. Agents

Chemother., vol. 34, no. 10, pp. 2019–2023, 1990.

[63] M. M. Bonvin and M. M. De Bertorello, “In vitro sodium salicylate release from chitosan films,” Polym. Bull., vol. 31, no. 3, pp. 375–379, 1993.

[64] B. L. Butler, P. J. Vergano, R. F. Testin, J. M. Bunn, and J. L. Wiles, “Mechanical and barrier properties of edible chitosan films as affected by composition and storage,” J.

Food Sci., vol. 61, no. 5, pp. 953–956, 1996.

[65] P. C. Srinivasa, M. N. Ramesh, K. R. Kumar, and R. N. Tharanathan, “Properties of chitosan films prepared under different drying conditions,” J. Food Eng., vol. 63, no. 1, pp. 79–85, 2004.

[66] C. Véronique, “Bioactive packaging technologies for extended shelf life of meat-based products,” Meat Sci., vol. 78, no. 1, pp. 90–103, 2008.

[67] J. Quesada, E. Sendra, C. Navarro, and E. Sayas-Barberá, “Antimicrobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready- to-Eat Meat,” Foods, vol. 5, no. 3, pp. 57–70, 2016.

[68] E. I. Rabea, M. E.-T. Badawy, C. V Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,”

Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003.

[69] K. Sungsanit, N. Kao, and S. N. Bhattacharya, “Properties of linear poly (lactic

acid)/polyethylene glycol blends,” Polym. Eng. Sci., vol. 52, no. 1, pp. 108–116, 2012. [70] C. Koning, M. Van Duin, C. Pagnoulle, and R. Jerome, “Strategies for

compatibilization of polymer blends,” Prog. Polym. Sci., vol. 23, no. 4, pp. 707–757, 1998.

[71] B. Imre and B. Pukánszky, “Compatibilization in bio-based and biodegradable polymer blends,” Eur. Polym. J., vol. 49, no. 6, pp. 1215–1233, 2013.

[72] V. Vilay, M. Mariatti, Z. Ahmad, K. Pasomsouk, and M. Todo, “Improvement of microstructures and properties of biodegradable PLLA and PCL blends compatibilized with a triblock copolymer,” Mater. Sci. Eng. A, vol. 527, no. 26, pp. 6930–6937, 2010. [73] C. Yokesahachart and R. Yoksan, “Effect of amphiphilic molecules on characteristics

and tensile properties of thermoplastic starch and its blends with poly (lactic acid),”

Carbohydr. Polym., vol. 83, no. 1, pp. 22–31, 2011.

[74] M. Avella, M. E. Errico, P. Laurienzo, E. Martuscelli, M. Raimo, and R. Rimedio, “Preparation and characterisation of compatibilised polycaprolactone/starch composites,” Polymer (Guildf)., vol. 41, no. 10, pp. 3875–3881, 2000. [75] C.-S. Wu, “Physical properties and biodegradability of maleated-

polycaprolactone/starch composite,” Polym. Degrad. Stab., vol. 80, no. 1, pp. 127– 134, 2003.

[76] M. Funabashi, F. Ninomiya, and M. Kunioka, “Biodegradation of polycaprolactone powders proposed as reference test materials for international standard of

63

[77] J. L. Wiles, P. J. Vergano, F. H. Barron, J. M. Bunn, and R. F. Testin, “Water vapor transmission rates and sorption behavior of chitosan films,” J. Food Sci., vol. 65, no. 7, pp. 1175–1179, 2000.

[78] T. Honma, T. Senda, and Y. Inoue, “Thermal properties and crystallization behaviour of blends of poly ($\varepsilon$-caprolactone) with chitin and chitosan,” Polym. Int., vol. 52, no. 12, pp. 1839–1846, 2003.

[79] R. Zhang, W. Xu, and F. Jiang, “Fabrication and characterization of dense

chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes,” Fibers Polym., vol. 13, no. 5, pp. 571–575, 2012.

[80] I. Leceta, P. Guerrero, and K. la Caba, “Functional properties of chitosan-based films,”

Carbohydr. Polym., vol. 93, no. 1, pp. 339–346, 2013.

[81] D. M. Garc’\ia Cruz, J. L. Gomez Ribelles, and M. Salmerón Sánchez, “Blending polysaccharides with biodegradable polymers. I. Properties of

chitosan/polycaprolactone blends,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 85, no. 2, pp. 303–313, 2008.

[82] C. Caner, P. J. Vergano, and J. L. Wiles, “Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage,” J. Food Sci., vol. 63, no. 6, pp. 1049–1053, 1998.

[83] L. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, and J. Debevere,

“Developments in the active packaging of foods,” Trends food Sci. Technol., vol. 10, no. 3, pp. 77–86, 1999.

[84] M. Ozdemir and J. D. Floros, “Active food packaging technologies,” Crit. Rev. Food

Sci. Nutr., vol. 44, no. 3, pp. 185–193, 2004.

[85] A. L. Brody, B. Bugusu, J. H. Han, C. K. Sand, and T. H. McHugh, “Scientific status summary,” J. Food Sci., vol. 73, no. 8, pp. 107–116, 2008.

[86] T. P. Labuza and W. M. Breene, “Applications of ‘active packaging’ for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods,” J. Food

Process. Preserv., vol. 13, no. 1, pp. 1–69, 1989.

[87] A. L. Brody, E. P. Strupinsky, and L. R. Kline, Active packaging for food applications. CRC press, 2001.

[88] P. Suppakul, J. Miltz, K. Sonneveld, and S. W. Bigger, “Active packaging

technologies with an emphasis on antimicrobial packaging and its applications,” J.

Food Sci., vol. 68, no. 2, pp. 408–420, 2003.

[89] J. Dobiáš, K. Chudackova, M. Voldrich, and M. Marek, “Properties of polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-

hydroxybenzoic acid and their suitability for food packaging,” Food Addit. Contam., vol. 17, no. 12, pp. 1047–1053, 2000.

[90] K. Zhang, X. Ran, X. Wang, C. Han, L. Han, X. Wen, Y. Zhuang, L. Dong,

“Improvement in toughness and crystallization of poly (L-lactic acid) by melt blending with poly (epichlorohydrin-co-ethylene oxide),” Polym. Eng. Sci., vol. 51, no. 12, pp. 2370–2380, 2011.

64

Food Sci. Emerg. Technol., vol. 3, no. 2, pp. 113–126, 2002.

[92] J. H. Han, “Antimicrobial food packaging,” Nov. food Packag. Tech., vol. 8, pp. 50– 70, 2003.

[93] J. Turner, A. Riga, A. O’Connor, J. Zhang, and J. Collis, “Characterization of drawn and undrawn poly-L-lactide films by differential scanning calorimetry,” J. Therm.

Anal. Calorim., vol. 75, no. 1, pp. 257–268, 2004.

[94] J. Bonilla, E. Fortunati, M. Vargas, A. Chiralt, and J. M. Kenny, “Effects of chitosan on the physicochemical and antimicrobial properties of PLA films,” J. Food Eng., vol. 119, no. 2, pp. 236–243, 2013.

[95] X. Chen, D. Rodrigue, and S. Kaliaguine, “Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes,” Sep. Purif. Technol., vol. 86, pp. 221– 233, 2012.

[96] P. Bie, P. Liu, L. Yu, X. Li, L. Chen, and F. Xie, “The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix,” Carbohydr.

Polym., vol. 98, no. 1, pp. 959–966, 2013.

[97] N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, “Mechanical and barrier

properties of biodegradable films made from chitosan and poly (lactic acid) blends,” J.

Polym. Environ., vol. 12, no. 1, pp. 1–6, 2004.

[98] F. Shahidi, J. K. V. Arachchi, and Y.-J. Jeon, “Food applications of chitin and chitosans,” Trends food Sci. Technol., vol. 10, no. 2, pp. 37–51, 1999.

[99] R. Premraj and M. Doble, “Biodegradation of polymers,” Indian J. Biotechnol., vol. 4, no. 2, pp. 186–193, 2005.

[100] M. Peesan, P. Supaphol, and R. Rujiravanit, “Preparation and characterization of hexanoyl chitosan/polylactide blend films,” Carbohydr. Polym., vol. 60, no. 3, pp. 343–350, 2005.

[101] M. Sheth, R. A. Kumar, V. Davé, R. A. Gross, and S. P. McCarthy, “Biodegradable polymer blends of poly (lactic acid) and poly (ethylene glycol),” J. Appl. Polym. Sci., vol. 66, no. 8, pp. 1495–1505, 1997.

Documents relatifs