• Aucun résultat trouvé

Chapitre 4 Exchange of associated factors directs a switch in HBO1 acetyltransferase

5.6. Conclusion

Au cours de mon doctorat, j’ai pu caractériser différents domaines protéiques présents dans les sous-unités des acétyltransférases de la famille MYST. Ces caractérisations ont permis de localiser ces protéines sur le génome entier ainsi que d’établir leur fonction dans la transcription des gènes. Elles ont également permis de comprendre les différentes interactions moléculaires qui existent entre les divers domaines de la même sous-unité ou de sous-unités différentes dans le même complexe. J’ai également révélé un nouveau mécanisme par lequel ces acétyltransférases choisissent leur spécificité de substrat, soit par leur association à différentes sous-unités d’échafaudage. Tous ces résultats démontrent donc qu’il est important de percevoir les MYST acétyltransférases comme des complexes et non comme des protéines individuelles (Tableau 5-1). En effet, la littérature abonde d’expériences qui ne prennent pas en considération cette notion de « complexe ». De plus, il est important d’étudier ces complexes dans un contexte de chromatine (et non d’histones libres) afin d’observer leur spécificité catalytique. Finalement, plusieurs des sous-unités et leurs paralogues possèdent déjà des fonctions dans différents contextes cellulaires (Tableau 5-2) et il sera donc important de déterminer avec quel(s) complexe(s) chaque fonction est associée. Si la reconnaissance, la spécificité d’acétylation ainsi que la fonction cellulaire de ces enzymes passent par l’ensemble de leurs sous-unités, il est donc essentiel de ne pas oublier qu’elles sont associées à d’autres protéines et que ces protéines sont tout aussi importantes pour leur fonctionnement que la sous-unité enzymatique en elle-même.

158

Tableau 5-1. Résumé des différents domaines protéiques et spécificités des complexes MYST étudiés. a Selon Mishimal et al. (2011).

b Vu en surexpression uniquement.

Complexes

Autres sous- unités confirmées

Domaines protéiques et de reconnaissance de la chromatine

Activité spécifique sur la

chromatine

HBO1-JADE(1/2/3) ING4/5, hEaf6

JADE (1/2/3)

Domaine I : sous-unité catalytique Domaine II : INGs/hEaf6

N-term EPcA : essentiel à la spécificité d’acétylation sur chromatine

PZP: H3K4me0 H4K5/8/12ac

ING4/5 PHD : H3K4me3

HBO1 MYST : catalytique et liaison domaine I JADEs

HBO1-BRPF1 ING4/5, hEaf6

BRPF1

Domaine I : sous-unité catalytique Domaine II : INGs/hEaf6

N-term EPcA: essentiel à la spécificité d’acétylation sur chromatine PZP: H3K4me0

PWWP: H3K36me3 Bromo: H4ac

H3K14/23ac ING4/5 PHD: H3K4me3

HBO1 MYST : catalytique et liaison domaine I BRPF1

HBO1-BRPF2a ING4, hEaf6 BRPF2 ING4 Voir BRPF1 PHD: H3K4me3 H3K14ac

HBO1 MYST: catalytique et liaison domaine I BRPF2

MOZ/MORF- BRPF1/2/3 ING5, hEaf6 BRPF1/2/3 Voir BRPF1 H3K14/23ac ING5 PHD: H3K4me3 MOZ/ MORF

MYST : catalytique et liaison domaine I BRPFs Tandem PHD : H3K14ac/H3R2me0 (MORF)

MOZ-JADE1b ING5, hEaf6

JADE1 Voir JADE

H4ac (K5/8/12 ?) ING5 PHD: H3K4me3

MOZ/ MORF

MYST : catalytique et liaison domaine I JADEs Tandem PHD: H3K14ac/H3R2me0

159

Protéines Paralogues Fonctions cellulaires

JADE JADE1  Transcription

 Suppresseur de tumeurs

BRPF BRPF1  Expression des gènes HOX

BRPF2  Érythropoïèse

ING

ING4

 Voie NF-κB (via expression IκB)  Hypoxie

 Prolifération et croissance cellulaire  Suppresseur de tumeurs

 Transcription p53/c-myc

ING5

 Réplication

 Prolifération et croissance cellulaire  Suppresseur de tumeurs

 Transcription p53

HBO1 -

 Réplication

 Transcription des gènes, en particulier ceux de la voie p53/p21

 Co-activateur transcriptionnel, récepteurs nucléaires hormonaux

 Répression des gènes HOX  Suppresseur de tumeurs  Voie NF-κB

 Érythropoïèse/ Développement des cellules souches hématopoïétiques

MOZ -

 Expression des gènes HOX et TBX1  Co-activateur transcriptionnel AML1, p65

(NF-κB) et p21  Hématopoïèse

MORF -  Neurogénèse

Tableau 5-2. Résumé des différentes fonctions cellulaires des sous-unités et paralogues des complexes acétyltransférases de la famille MYST principalement étudiés.

161

Bibliographie

Abmayr SM, Yao, Tingting, Parmely, Tari and Workman, Jerry L. . 1993. Preparation of nuclear and cytoplasmic Extracts from Mammalian Cells. Curr Protoc Mol Biol: 12.11.11- 12.11.19.

Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N et al. 2008. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133: 1006-1018.

Adkins MW, Carson JJ, English CM, Ramey CJ, Tyler JK. 2007. The histone chaperone anti- silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase.

J Biol Chem 282: 1334-1340.

Adkins MW, Howar SR, Tyler JK. 2004. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14: 657-666.

Agalioti T, Chen G, Thanos D. 2002. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111: 381-392.

Agricola E, Verdone L, Di Mauro E, Caserta M. 2006. H4 acetylation does not replace H3

acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes.

Mol Microbiol 62: 1433-1446.

Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, Ito E, Ohno H, Stanley ER, Singh H et al. 2010. PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med 16: 580-585, 581p following 585.

Akhtar A, Becker PB. 2000. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367-375. Alabert C, Groth A. 2012. Chromatin replication and epigenome maintenance. Nat Rev Mol Cell

Biol 13: 153-167.

Albulescu LO, Sabet N, Gudipati M, Stepankiw N, Bergman ZJ, Huffaker TC, Pleiss JA. 2012. A quantitative, high-throughput reverse genetic screen reveals novel connections between Pre- mRNA splicing and 5' and 3' end transcript determinants. PLoS Genet 8: e1002530.

Alekseyenko AA, Peng S, Larschan E, Gorchakov AA, Lee OK, Kharchenko P, McGrath SD, Wang CI, Mardis ER, Park PJ et al. 2008. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134: 599-609.

Ali M, Yan K, Lalonde ME, Degerny C, Rothbart SB, Strahl BD, Cote J, Yang XJ, Kutateladze TG. 2012. Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin. J Mol Biol 424: 328-338.

Allfrey VG, Faulkner R, Mirsky AE. 1964. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proceedings of the National Academy of

Sciences of the United States of America 51: 786-794.

Allis CD, Jenuwein, T., Reinberg, D., Caparros, M.L. 2007. Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J. 2007. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin.

Mol Cell 28: 1002-1014.

Arita K, Isogai S, Oda T, Unoki M, Sugita K, Sekiyama N, Kuwata K, Hamamoto R, Tochio H, Sato M et al. 2012. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proceedings of the National

162

Auger A, Galarneau L, Altaf M, Nourani A, Doyon Y, Utley RT, Cronier D, Allard S, Cote J. 2008. Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants. Mol Cell Biol 28: 2257- 2270.

Avvakumov N, Cote J. 2007a. Functions of myst family histone acetyltransferases and their link to disease. Sub-cellular biochemistry 41: 295-317.

Avvakumov N, Cote J. 2007b. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26: 5395-5407.

Avvakumov N, Lalonde ME, Saksouk N, Paquet E, Glass KC, Landry AJ, Doyon Y, Cayrou C, Robitaille GA, Richard DE et al. 2012. Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol Cell Biol 32: 689-703.

Avvakumov N, Nourani A, Cote J. 2011. Histone chaperones: modulators of chromatin marks. Mol

Cell 41: 502-514.

Bannister AJ, Miska EA, Gorlich D, Kouzarides T. 2000. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10: 467-470.

Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. 2005. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280: 17732-17736.

Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

Nature 410: 120-124.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. 2009. An operational definition of

epigenetics. Genes & development 23: 781-783.

Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL. 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl

Acad Sci U S A 99: 8695-8700.

Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ, 3rd, Gingeras TR et al. 2005. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169-181.

Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO et al. 2011. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. The EMBO journal 30: 2829-2842.

Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM,

Christman MF. 2002. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411-415.

Biswas D, Takahata S, Xin H, Dutta-Biswas R, Yu Y, Formosa T, Stillman DJ. 2008. A role for Chd1 and Set2 in negatively regulating DNA replication in Saccharomyces cerevisiae.

Genetics 178: 649-659.

Black BE, Cleveland DW. 2011. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144: 471-479.

Black JC, Van Rechem C, Whetstine JR. 2012. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48: 491-507.

Blus BJ, Wiggins K, Khorasanizadeh S. 2011. Epigenetic virtues of chromodomains. Crit Rev

Biochem Mol Biol 46: 507-526.

Bonasio R, Tu S, Reinberg D. 2010. Molecular signals of epigenetic states. Science 330: 612-616. Bonisch C, Hake SB. 2012. Histone H2A variants in nucleosomes and chromatin: more or less

stable? Nucleic Acids Res 40: 10719-10741.

Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. 2008. GammaH2AX and cancer. Nat Rev Cancer 8: 957-967.

163 Borrow J, Stanton VP, Jr., Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C,

Dube I, Frischauf AM et al. 1996. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14: 33-41.

Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G. 2006. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127: 1361-1373.

Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S, Savard J, Lane WS, Tan S, Cote J. 2003. Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 17: 1415-1428.

Boyer LA, Latek RR, Peterson CL. 2004. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5: 158-163.

Bozhenok L, Wade PA, Varga-Weisz P. 2002. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J 21: 2231-2241.

Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L. 2001. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20: 3187-3196.

Brooks CL, Gu W. 2011. The impact of acetylation and deacetylation on the p53 pathway. Protein

Cell 2: 456-462.

Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843-851.

Burke TW, Cook JG, Asano M, Nevins JR. 2001. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276: 15397-15408.

Buscaino A, Kocher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A. 2003. MOF- regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell

11: 1265-1277.

Cai Y, Jin J, Yao T, Gottschalk AJ, Swanson SK, Wu S, Shi Y, Washburn MP, Florens L, Conaway RC et al. 2007. YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol 14: 872-874.

Campos EI, Chin MY, Kuo WH, Li G. 2004a. Biological functions of the ING family tumor suppressors. Cell Mol Life Sci 61: 2597-2613.

Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Seepany H, Gao Z, Day LA,

Greenblatt JF et al. 2010. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17: 1343-1351.

Campos EI, Martinka M, Mitchell DL, Dai DL, Li G. 2004b. Mutations of the ING1 tumor suppressor gene detected in human melanoma abrogate nucleotide excision repair. Int J

Oncol 25: 73-80.

Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, Narlikar GJ, Al- Sady B. 2011. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome- bridging mechanism for heterochromatin assembly. Molecular Cell 41: 67-81.

Carapeti M, Aguiar RC, Goldman JM, Cross NC. 1998. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91: 3127-3133.

Carrozza MJ, Florens L, Swanson SK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL. 2005a. Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. Biochim Biophys Acta 1731: 77-87; discussion 75-76.

Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP et al. 2005b. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581-592.

Carrozza MJ, Utley RT, Workman JL, Cote J. 2003. The diverse functions of histone acetyltransferase complexes. Trends Genet 19: 321-329.

164

Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ. 2000. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer

28: 138-144.

Chai B, Huang J, Cairns BR, Laurent BC. 2005. Distinct roles for the RSC and Swi/Snf ATP- dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19: 1656- 1661.

Champagne KS, Saksouk N, Pena PV, Johnson K, Ullah M, Yang XJ, Cote J, Kutateladze TG. 2008. The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72: 1371-1376.

Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ. 1999. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274: 28528-28536.

Chan EM, Chan RJ, Comer EM, Goulet RJ, 3rd, Crean CD, Brown ZD, Fruehwald AM, Yang Z, Boswell HS, Nakshatri H et al. 2007. MOZ and MOZ-CBP cooperate with NF-kappaB to activate transcription from NF-kappaB-dependent promoters. Exp Hematol 35: 1782-1792. Chan HM, La Thangue NB. 2001. p300/CBP proteins: HATs for transcriptional bridges and

scaffolds. J Cell Sci 114: 2363-2373.

Chan HM, Narita M, Lowe SW, Livingston DM. 2005. The p400 E1A-associated protein is a novel component of the p53 --> p21 senescence pathway. Genes Dev 19: 196-201.

Chen C, Nott TJ, Jin J, Pawson T. 2011. Deciphering arginine methylation: Tudor tells the tale.

Nature reviews Molecular cell biology 12: 629-642.

Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler JK. 2008. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134: 231-243.

Chignola F, Gaetani M, Rebane A, Org T, Mollica L, Zucchelli C, Spitaleri A, Mannella V, Peterson P, Musco G. 2009. The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation. Nucleic Acids Res 37: 2951-2961.

Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I et al. 2008. Jade-1 inhibits Wnt signalling by ubiquitylating beta- catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 10: 1208-1216. Chittuluru JR, Chaban Y, Monnet-Saksouk J, Carrozza MJ, Sapountzi V, Selleck W, Huang J, Utley RT, Cramet M, Allard S et al. 2011. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol

18: 1196-1203.

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions.

Science 325: 834-840.

Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem

78: 273-304.

Coles AH, Gannon H, Cerny A, Kurt-Jones E, Jones SN. 2010. Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc

Natl Acad Sci U S A 107: 11423-11428.

Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L et al. 2007. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110: 4464-4475.

Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD. 2002. An ACF1- ISWI chromatin-remodeling complex is required for DNA replication through

165 Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X. 2008. The ankyrin

repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15: 245-250.

Conrad T, Cavalli FM, Holz H, Hallacli E, Kind J, Ilik I, Vaquerizas JM, Luscombe NM, Akhtar A. 2012. The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex. Dev Cell 22: 610-624.

Contzler R, Regamey A, Favre B, Roger T, Hohl D, Huber M. 2006. Histone acetyltransferase HBO1 inhibits NF-kappaB activity by coactivator sequestration. Biochem Biophys Res

Commun 350: 208-213.

Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. 2009. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458: 591-596.

Corey LL, Weirich CS, Benjamin IJ, Kingston RE. 2003. Localized recruitment of a chromatin- remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17: 1392-1401.

Costanzi C, Pehrson JR. 1998. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599-601.

Couture JF, Collazo E, Trievel RC. 2006. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 13: 698-703.

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107: 21931-21936. Crump JG, Swartz ME, Eberhart JK, Kimmel CB. 2006. Moz-dependent Hox expression controls

segment-specific fate maps of skeletal precursors in the face. Development 133: 2661-2669. Das C, Lucia MS, Hansen KC, Tyler JK. 2009. CBP/p300-mediated acetylation of histone H3 on

lysine 56. Nature 459: 113-117.

Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sorensen CS, Petersen NH, Sorensen PH, Lukas C, Bartek J et al. 2012. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol.

Dawson MA, Kouzarides T. 2012. Cancer epigenetics: from mechanism to therapy. Cell 150: 12- 27.

de Almeida SF, Carmo-Fonseca M. 2012. Design principles of interconnections between chromatin and pre-mRNA splicing. Trends in biochemical sciences 37: 248-253.

de la Serna IL, Carlson KA, Imbalzano AN. 2001. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27: 187-190.

de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M et al. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7: 663-676. Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK,

Cleary ML, Gilliland DG. 2003. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3: 259-271.

Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491-496.

Dorigo B, Schalch T, Bystricky K, Richmond TJ. 2003. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327: 85-96.

Dormann HL, Tseng BS, Allis CD, Funabiki H, Fischle W. 2006. Dynamic regulation of effector protein binding to histone modifications: the biology of HP1 switching. Cell Cycle 5: 2842- 2851.

Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A. 2002. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6.

166

Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J. 2004. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979-990.

Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J. 2006. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51-64.

Doyon Y, Selleck W, Lane WS, Tan S, Cote J. 2004. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884- 1896.

Draker R, Ng MK, Sarcinella E, Ignatchenko V, Kislinger T, Cheung P. 2012. A combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation.

PLoS Genet 8: e1003047.

Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. 2010. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24: 1253-1265.

Driscoll R, Hudson A, Jackson SP. 2007. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315: 649-652.

Drogaris P, Villeneuve V, Pomies C, Lee EH, Bourdeau V, Bonneil E, Ferbeyre G, Verreault A, Thibault P. 2012. Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation. Sci Rep 2: 220.

Du J, Kelly AE, Funabiki H, Patel DJ. 2012. Structural basis for recognition of H3T3ph and Smac/DIABLO N-terminal peptides by human Survivin. Structure 20: 185-195. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE,

Kinzler KW, Vogelstein B. 1993. WAF1, a potential mediator of p53 tumor suppression.

Cell 75: 817-825.

Elsasser SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ. 2012. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491: 560-565.

Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner

Documents relatifs