• Aucun résultat trouvé

Dans ce chapitre nous avons commencé dans un premier lieu de situer la place de la MRV dans la conversion électromécanique d‟énergie et montré leurs performances en comparaison avec d‟autres types de convertisseurs électromécaniques, en second lieu nous avons cité les avantages et les inconvénients des MRV, puis nous avons présenté un bref historique de la MRV ainsi que leurs théorie élémentaire, et à la fin nous avons terminé par un état de l‟art sur l‟optimisation et les paramètres d‟influences sur les performances des MRV.

42

R

EFERENCES

1

[1] J. F. Gieras, “Advancements in Electric Machines”, Power Systems ISSN: 1612-1287, Springer, Rockford, Illinois, U.S.A., March 2008.

[2] Piotr Wach,” Dynamics and Control ofElectrical Drives”, ISBN 978-3-642-20221-6, Springer-Verlag

Berlin Heidelberg, 2011.

[3] http://www.maxicours.com/soutien-scolaire/electrotechnique/bac-pro/132631.html

[4] http://www.flashrc.com/sky_rc/15645moteur_brushless_ares_pro_competition_135t_kv3050_sky_rc.ht ml

[5] http://motorsolver.com/dyno-kits/optional-test-motors/

[6] P.O. Rasmussen “Design and Advanced Control of Switched Reluctance Motors”, Dissertation ,Aalborg University 2002.

[7] M. R. Harris, H. R. Bolton, et all, "Discussion on "Variable-Speed Switched Reluctance Motors"", Proceedings IEE, Vol. 128, September 1981, pp. 260 - 268.

[8] B. D. Bedford, "Compatible Brushless Reluctance Motors and Controlled Switch Circuits", U.S. Patent 3.679.953, July 1972.

[9] B. D. Bedford, "Compatible Permanent Magnet or Reluctance Brushless Motors and Controlled Switch Circuits", U.S. Patent 3.678.352, July 1972.

[10] W.F. Ray, R. M. Davis, "Inverter Drive for Doubly Salient Reluctance Motor: Its Fundamental Behaviour, Linear Analysis and Cost Implications", IEE Electric Power Applications, Vol. 2, December 1979, pp. 185 - 193.

[11] P. J. Lawrenson, J. M Stephenson, P. T. Blenkinsop, J. Corda, N. N. Fulton, "Variable- Speed Switched Reluctance Motors", IEE Proceedings, Part B, Electric Power Applications, Vol. 127, No. 4, July, 1980, pp. 253 - 265.

[12] J. M. Stephenson, J. Corda, "Computation of Torque and Current in Doubly-Salient Reluctance Motors from Nonlinear Magnetization Data", IEE Proceedings, Part B, Electric Power Applications, Vol. 126, No. 5, May, 1979, pp. 393 - 396.

[13] T. J. E. Miller, "Switched reluctance motors and their control", Magna Physics Pub Clarendon Press, 1993, ISBN: 1881855023 (Magna Physics Pub.) 0198593872 (Clarendon Press).

[14] J. V. Byrne, J. G. Lacy, "Characteristics of Saturable Stepper and Reluctance Motors", IEE Publication No. 136, March 1976, pp. 93 - 96.

43

[15] J. V. Byrne, J. B. O'Dwyer, "Saturable Variable Reluctance Machine Simulation Using Exponential Functions", Proceedings of the International Conference on Stepping Motors and Systems, University of Leeds, July 1976, pp. 11 - 16.

[16] R. Davis, "Power supply to a stator of a polyphase reluctance machine", U.S. patent 5.703.457, 1997.

[17] C. Mademlis, and I. Kioskeridis, "Optimizing performance in current-controlled switched reluctance generators," IEEE Trans. on Energy Conversion, vol. 20, no. 3, pp. 556-565, 2005.

[18] B. Fahimi, A. Emadi, and R. Sepe, "A switched reluctance machine based starter/alternator for more electric cars," IEEE Trans. on Energy Conversion, vol. 19, no. 1, pp. 116-124, 2004.

[19] C. Lin, and B. Fahimi, “Prediction of Acoustic Noise in Switched Reluctance Motor Drives,” IEEE Trans. on Energy Conversion, vol.28, no.1, pp.250-258, 2014.

[20] R. Cardenas et al., "Control of a Switched Reluctance Generator for Variable-Speed Wind Energy Applications," IEEE Trans. on Energy Conversion, vol. 20, no. 4, pp. 781-791, 2005.

[21] J. Wang, and D. Howe, "Influence of Soft Magnetic Materials on the Design and Performance of Tubular Permanent Magnet Machines," IEEE Trans. on Magnetics, vol. 41, no. 10, pp. 4057-4059, 2005.

[22] Zeraoulia M, Benbouzid M E H, Diallo D. Electric Motor Drive Selection Issues for HEV Propulsion Systems A Comparative Study. IEEE Transactions on Vehicular Technology; Novembre 2006; vol. 55, pp. 1756 - 1764.

[23] Rahman K M, Fahimi B, Suresh G, Rajathnam A V, Ehsani M. Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues. IEEE Transaction On Ind. Applications; Jan 2000; vol. 36, pp. 111 - 121.

[24] Jack A G, Mecrow B C, Haylock J A. A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications. IEEE Trans. On Industry Applications; July/August 1996; vol. 32, pp. 889 - 895.

[25] K. Vijayakumar et al., "Dynamic Analysis of Switched Reluctance Machine using Soft Magnetic Composite Material," in PEDES 2010.

[26] H. Hayashi, A. Chiba, and T. Fukao, "Efficiency Comparison of Switched Reluctance Motors with Low Loss Materials," in IEEE Power Engineering Society General Meeting, 24-28 June 2007, Tampa, FL.

[27] H. Toda, and K. Senda, "Influence of Various Non-Oriented Electrical Steels on Motor Efficiency and Iron Loss in Switched Reluctance Motor," IEEE Trans. on Magnetics, vol. 49, no. 7, 2013.

[28] Y. Sugawara, and K. Akatsu, "Characteristics of Switched Reluctance Motor using Grain-Oriented Electric Steel Shet," in 2013 IEEE ECCE Asia, 3-6 June 2013, pp. 1105-1110, Melbourne, VIC.

44

[29] K.Vijiyakumar, R. Karthikeyan, and R. Arumugam, "Influence of Soft Magnetic Composite Material on the Electromagnetic Torque Characteristics of Switched Reluctance Motor," in

POWERCON 2008, 12-15 October 2008, New Delhi.

[30] K. Vijayakumar, and R. Karthikeyen, "Two Dimensional Magnetic and Thermal Analysis of High Speed Switched Reluctane Motor Using Soft Magnetic Composite Material," in 2008 IEEE TENCON, 19-21 Nov. 2008, Hyderabad.

[31] A. Chiba et al., "Test Results of an SRM Made From a Layered Block of Heat-Treated Amorphous Alloys," IEEE Trans. On Industry Applications, vol. 44, no. 3, pp. 699-706, 2008.

[32] J. Gao, H. Sun, “Optimization Design of Switched Reluctance Motor based on Particle Swarm Optimization”, School of Control Science and Engineering, Hebei University of Technology, China. [33] M. Blaji, V. Kamaraj, “Design Optimization of SRM using Particle Swarm Optimization”, 1st

International Conference on Electrical Energy System (ICEES), 3-5 Jan. 2011, Newport Beach CA, pp.

164-169.

[34] T. Raminosa, B. Lunier “Design and Optimization of a SRM Driving a Compressor for a PEM Fuel-Cell System for Automotive Applications”, IEEE-TIE, Vol. 57, No. 9, September 2010, pp. 1-5. [35] W. Phuangmalai, N. Chayopitak, “A Design Study of 4/2 Switched Reluctance Motor Using

Particle Swarm Optimization”, in : 9th Int. Conf. (ECTI-CON), 16-18 May 2012, Phetchaburi.

[36] F. Sahin, H.B. Erta, and L. Leblebicioglu, “Optimum Geometry for Torque Ripple Minimization of SRM”, IEEE Transactions on Energy Conversion, vol. 15, no.1, 2000, pp. 30–39.

[37] K. M. Rahman et al., “Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues”, IEEE Trans.On Ind. Applications, vol. 36, No. 1, January/February 2000. [38] A. G. Jack, B. C. Mecrow, and J. A. Haylock, “Acomparative study of permanent magnet and

switched reluctance motors for high-performance fault-tolerant applications”, IEEE Trans. On Industry

Applications, vol. 32, No. 4, July/August 1996.

[39] R. Cardenas et al., “Control of a Switched Reluctance Generator for Variable-Speed Wind Energy Applications”, IEEE Trans. On Energy Conversion, vol. 20, No. 4, December 2005, pp. 781-791. [40] R. Krishnan, “Switched reluctance motor drives: modeling, simulation, analysis, design, and

applications”, Magna Physics Pubishing, 2001.

[41] B. Mirzaeian, M. Moallem, „Multiobjective Optimization Method Based on a Genetic Algorithm for Switched Reluctance Motor Design‟, IEEE Transactions on Magnetics, Vol. 38, NO. 3, May 2002. [42] Jae-Hak Choi, Sol Kim, „Multi-Object Optimization of the Switched Reluctance Motor‟ KIEE

International Transactions on EMECS, Vol. 4-B No. 4, pp. 184~189, 2004

[43] D. Ilea, F. Gillon, „Multi-Objective Optimization of a Switched Reluctance Motor for Light Electric Traction Applications‟, IEEE Vehicle Power and Propulsion Conference (VPPC), 2010

45

[45] H. Yahia, N. Liouane, “Multiobjective differential evolution-based performance optimization for switched reluctance motor drives”, Turkish Journal of Electrical Engineering & Computer Sciences,2013.

[46] [15] F.L. Bokose, L. Van DeVelde., “Sequential approximate multiobjective optimisation of switched reluctance motor design using surrogate models and nongradient local search algorithm”, IEEE Proceedings - Science, Measurement and Technology, Vol 151, Issue 6, November 2004.

[47] [16] M. Balaji, V. Kamaraj, “Particle swarm optimization approach for optimal design of switched reluctance machine”, Am. J. Applied Sci.,vol. 8, pp. 374-381, 2011.

[48] [17] Mirzaeian, Dehkordi, “Genetic Algorithm Based Optimal Design of Switching Circuit Parameters for a Switched Reluctance Motor Drive”, PEDES '06. International Conference on Power Electronics, Drives and Energy Systems, 2006.

46

Chapitre 02

Matériaux magnétiques et pertes associées : Etat de l’Art &

application à une MRV6/4

47

2.1. Introduction

Dans l‟électrotechnique moderne, les matériaux magnétiques doux prennent une importance de plus en plus grande. Avant l‟apparition des différents types des matériaux magnétiques, l‟électrotechnicien n‟avait pratiquement à sa disposition que du fer ordinaire mais, au cours des dernières années, de nombreux matériaux magnétiques spéciaux sont apparus et ont considérablement influencé les performances et les coûts de fabrication.

La conception des machines électriques avec des performances très élevés exige l‟emploi de matériaux à faibles pertes magnétiques et à aimantation élevée à faible magnétisation. Le classement des matériaux magnétiques doux peut être schématisé selon la figure 2.1 [1-3].

Figure 2.1. Classification des principaux types de matériaux magnétiques doux [2].

2.2. Matériaux ferromagnétiques doux et leurs alliages