• Aucun résultat trouvé

Ctrl TUNEL Test TUNEL

V) CONCLUSION ET PERSPECTIVES

Nous avons développé, caractérisé et commencé à tester un modèle tumoral de mélanome en trois dimensions prenant en compte les interactions cellulaires et cellules/matrice extracellulaire. Le développement de ce modèle permet ainsi de se rapprocher de l’environnement physiologique des cellules tumorales. Cela permettra d’évaluer l’impact de l’environnement 3D sur la réponse au vémurafénib.

Ce modèle, viable et facilement réalisable, va servir de base à un prochain projet qui consistera à remplacer les lignées cellulaires établies de mélanome par des cellules provenant directement de patients. Le principe sera de prélever du tissu tumoral, d’isoler les cellules cancéreuses, de les cryoconserver, puis de les cultiver au sein du modèle. Une comparaison entre la réponse clinique et in vitro permettra d’évaluer l’intérêt du modèle dans le cadre de la thérapie personnalisée. Nous prévoyons également de complexifier le modèle par l’ajout d’un équivalent d’épiderme.

VI) BIBLIOGRAPHIE

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014 ; 64 : 9–29.

2. Brohem CA, Da Silva Cardeal LB, Tiago M, Soengas MS, de Moraes Barros SB, Maria-Engler SS. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 2011 ; 24 : 35–50.

3. Conde-Perez A, Larue L. Human relevance of NRAS/BRAF mouse melanoma models. Eur J Cell Biol. 2014 ; 93 : 82–86.

4. El-Nassan HB. Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Eur J Med Chem. 2014 ; 72 : 170–205.

5. Scolyer RA, Long GV, Thompson JF. Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Mol Oncol. 2011 ; 5 : 124– 136.

6. Rahman MA, Salajegheh A, Smith RA, Lam AK-Y. B-Raf mutation: a key player in molecular biology of cancer. Exp Mol Pathol. 2013 ; 95 : 336–342.

7. Ilieva KM, Correa I, Josephs DH, Karagiannis P, Egbuniwe IU, Cafferkey MJ, et al. Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma. Mol Cancer Ther. 2014 ; 13 : 2769–2783.

8. Kimbrough CW, McMasters KM, Davis EG. Principles of surgical treatment of malignant melanoma. Surg Clin North Am. 2014 ; 94 : 973–988.

9. Atallah E, Flaherty L. Treatment of metastatic malignant melanoma. Curr Treat Options Oncol. 2005 ; 6 : 185–193.

10. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011 ; 364 : 2507–2516.

11. Larkin J, Lao CD, Urba WJ, McDermott DF, Horak C, Jiang J, et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015 ; 1 : 433–440.

12. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015 ; 16 : 908–918.

Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014 ; 371 : 1877–1888.

14. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014 ; 371 : 1867– 1876.

15. Herlyn M, Fukunaga-Kalabis M. What is a good model for melanoma? J Invest Dermatol. 2010 ; 130 : 911–912.

16. Herlyn M, Thurin J, Balaban G, Bennicelli JL, Herlyn D, Elder DE, et al. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 1985 ; 45 : 5670–5676.

17. Smalley KSM, Lioni M, Herlyn M. Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim. 2006 ; 42 : 242–247.

18. Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 ; 240 : 177–184.

19. Boisvert-Adamo K, Longmate W, Abel EV, Aplin AE. Mcl-1 is required for melanoma cell resistance to anoikis. Mol Cancer Res. 2009 ; 7 : 549–556.

20. Goundiam O, Nagel M-D, Vayssade M. Growth and survival signalling in B16F10 melanoma cells in 3D culture. Cell Biol Int. 2010 ; 34 : 385–391.

21. Vayssade M, Sengkhamparn N, Verhoef R, Delaigue C, Goundiam O, Vigneron P, et al. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells. Phytother Res. 2010 ; 24 : 982–989.

22. Eke I, Cordes N. Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiother Oncol. 2011 ; 99 : 271–278.

23. Roth A, Singer T. The application of 3D cell models to support drug safety assessment: opportunities & challenges. Adv Drug Deliv Rev. 2014 ; 69-70 : 179–189. 24. Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog. 2013 ; 52 : 167–182.

25. Tiago M, de Oliveira EM, Brohem CA, Pennacchi PC, Paes RD, Haga RB, et al. Fibroblasts protect melanoma cells from the cytotoxic effects of doxorubicin. Tissue Eng Part A. 2014 ; 20 : 2412–2421.

26. Hickman JA, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, et al. Three- dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014 ; 9 : 1115–1128.

research and drug evaluation. Biotechnol Adv. 2014 ; 32 : 1256–1268.

28. Schuessler TK, Chan XY, Chen HJ, Ji K, Park KM, Roshan-Ghias A, et al. Biomimetic tissue-engineered systems for advancing cancer research: NCI Strategic Workshop report. Cancer Res. 2014 ; 74 : 5359–5363.

29. Meier F, Nesbit M, Hsu M-Y, Martin B, Van Belle P, Elder DE, et al. Human melanoma progression in skin reconstructs: biological significance of bFGF. Am J Pathol. 2000 ; 156 : 193–200.

30. Vörsmann H, Groeber F, Walles H, Busch S, Beissert S, Walczak H, et al. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Cell Death Dis. 2013 ; 4 : e719.

31. Kiowski G, Biedermann T, Widmer DS, Civenni G, Burger C, Dummer R, et al. Engineering melanoma progression in a humanized environment in vivo. J Invest Dermatol. 2012 ; 132 : 144–153.

32. Tap WD, Gong K-W, Daring J, Tseng Y, Ginther C, Pauletti G, et al. Pharmacodynamic characterization of the efficacy signals sue to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia. 2010 ; 12 : 637–649.

33. Carlson MW, Alt-Holland A, Egles C, Garlick JA. Three-dimensional tissue models of normal and diseased skin. Curr Protoc Cell Biol Editor Board Juan Bonifacino Al. 2008 ; Chapter 19 : Unit 19.9.

34. Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R, et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 2010 ; 70 : 5518–5527.

35. Søndergaard JN, Nazarian R, Wang Q, Guo D, Hsueh T, Mok S, et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med. 2010 ; 8 : 39.

36. Charles J, Martel C, de Fraipont F, Leccia M-T, Robert C, Busser B. Mécanismes de résistance aux inhibiteurs de BRAF. Ann Dermatol Vénéréologie. 2014 ; 141 : 671–681. 37. Chau DYS, Johnson C, MacNeil S, Haycock JW, Ghaemmaghami AM. The development of a 3D immunocompetent model of human skin. Biofabrication. 2013 ; 5 : 035011.

Documents relatifs