• Aucun résultat trouvé

Les systèmes pour la délivrance locale et prolongée de principes actifs (PA) sont en constante évolution

depuis ces 30 dernières années, afin d’améliorer l’efficacité thérapeutique de l’actif encapsulé, et de

rendre le traitement moins contraignant pour le patient. Les hydrogels se sont avérés être d’excellents

candidats pour servir de plateforme à la délivrance de PA. Avec le développement d’hydrogels plus

sophis-tiqués, comme les hydrogels hybrides, les hydrogels double réseaux, et les hydrogels clics, les possibilités

de moduler leur porosité et ainsi la cinétique de libération du PA encapsulé sont infinies. Dans cet état de

l’art, des exemples de ces systèmes sophistiqués préparés à partir de chitosane ont été plus

particulière-ment présentés.

65

Ces travaux de thèse ont pour objectif de développer de nouveaux DDS capables de délivrer de façon

locale, et prolongée un PA hydrophobe. Pour retarder la libération du PA et pouvoir encapsuler un principe

actif hydrophobe, notre stratégie a été de d’explorer la double encapsulation, en solubilisant le PA

hydro-phobe dans des nanoparticules lipidiques (LNPs), elles mêmes intégrées dans les hydrogels. En s’appuyant

sur l’état de l’art rapporté dans ce chapitre, nous avons préparé des hydrogels hybrides à partir de 2 pol

y-saccharides, la CMC, et le chitosane, mélangé avec du PEG et réticulés par chimie clic. Ces systèmes sont

originaux de part leur mise en forme et les chimies développées pour les réticuler.

Des hydrogels hybrides de CMC/PEG, intégrant des LNPs, ont d’abord été préparés et réticulés par chimie

radicalaire thiol-ène. Les nouvelles propriétés de l’hydrogel composite ainsi que la stabilité des LNPs dans

ce matériau ont été étudiées. Le design du système a permis de moduler la cinétique de libération des

LNPs depuis les gels (chapitre 2). Un fluorophore encapsulé dans le cœur des LNPs sert de modèle pour

étudier la cinétique de libération du principe actif depuis ces systèmes.

A partir des résultats de l’étude approfondie des hydrogels composites de CMC/PEG + LNPs, de nouveaux

systèmes plus faciles à manipuler ont été développés. De part ses propriétés biologiques et les multiples

mises en forme possibles qu’il offre, le chitosane a été utilisé pour préparer des films et des éponges

hy-brides. Les films de chitosane seront décrits dans le chapitre 3. Les propriétés des éponges ainsi que la

stabilité des LNPs dans ce matériau seront étudiées dans le chapitre 4.

Références

[1] K. Park, Controlled drug delivery systems: Past forward and future back, Journal of Controlled Release,

190 (2014) 3-8.

[2] A.C. Anselmo, S. Mitragotri, An overview of clinical and commercial impact of drug delivery systems,

Journal of Controlled Release, 190 (2014) 15-28.

[3] X. Huang, C.S. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug

delivery systems, Journal of Controlled Release, 73 (2001) 121-136.

[4] Y. Brudno, D.J. Mooney, On-demand drug delivery from local depots, Journal of Controlled Release,

219 (2015) 8-17.

[5] L. Kleinberg, Polifeprosan 20, 3.85% carmustine slow-release wafer in malignant glioma: evidence for

role in era of standard adjuvant temozolomide, Core Evidence, 7 (2012) 115-130.

[6] R.J.J. Groenewegen, Drug delivery system for two or more active substances, in, Google Patents, 1999.

[7] S.S. Venkatraman, S. Li, R.M. Gale, J. Stepic, O.W.W. Van, Transdermal patch for administering fentanyl,

in, Google Patents, 2002.

[8] K.T. Savjani, A.K. Gajjar, J.K. Savjani, Drug Solubility: Importance and Enhancement Techniques, ISRN

Pharmaceutics, 2012 (2012) 195727.

[9] B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in Regenerative

Medicine, Advanced Materials, 21 (2009) 3307-3329.

[10] T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer, 49 (2008) 1993-2007.

[11] C. Elvira, J.F. Mano, J. San Román, R.L. Reis, Starch-based biodegradable hydrogels with potential biomedical

applications as drug delivery systems, Biomaterials, 23 (2002) 1955-1966.

[12] S. Chaterji, I.K. Kwon, K. Park, Smart Polymeric Gels: Redefining the Limits of Biomedical Devices,

Progress in Polymer Science, 32 (2007) 1083-1122.

[13] S.-k. Ahn, R.M. Kasi, S.-C. Kim, N. Sharma, Y. Zhou, Stimuli-responsive polymer gels, Soft Matter, 4

(2008) 1151-1157.

[14] X. Yang, G. Zhang, D. Zhang, Stimuli responsive gels based on low molecular weight gelators, Journal

of Materials Chemistry, 22 (2012) 38-50.

[15] Z.-Q. Cao, G.-J. Wang, Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels, The

Chemical Record, 16 (2016) 1398-1435.

[16] C.-C. Lin, A.T. Metters, Hydrogels in controlled release formulations: Network design and

mathematical modeling, Advanced Drug Delivery Reviews, 58 (2006) 1379-1408.

[17] N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery,

Advanced Drug Delivery Reviews, 62 (2010) 83-99.

[18] E.B. Denkbaş, R.M. Ottenbrite, Perspectives on: Chitosan drug delivery systems based on their

geometries, Journal of Bioactive and Compatible Polymers, 21 (2006) 351-368.

[19] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations,

European Journal of Pharmaceutics and Biopharmaceutics, 50 (2000) 27-46.

[20] N.A. Peppas, J.J. Sahlin, Hydrogels as mucoadhesive and bioadhesive materials: a review, Biomaterials,

17 (1996) 1553-1561.

[21] N. Salamat-Miller, M. Chittchang, T.P. Johnston, The use of mucoadhesive polymers in buccal drug

delivery, Advanced Drug Delivery Reviews, 57 (2005) 1666-1691.

[22] N.A. Peppas, A.R. Khare, Modern Hydrogel Delivery Systems Preparation, structure and diffusional

behavior of hydrogels in controlled release, Advanced Drug Delivery Reviews, 11 (1993) 1-35.

67

[23] P.B. Malafaya, G.A. Silva, R.L. Reis, Natural–origin polymers as carriers and scaffolds for biomolecules

and cell delivery in tissue engineering applications, Advanced Drug Delivery Reviews, 59 (2007) 207-233.

[24] S.W. Kim, Y.H. Bae, T. Okano, Hydrogels: Swelling, Drug Loading, and Release, Pharmaceutical

Research: An Official Journal of the American Association of Pharmaceutical Scientists, 9 (1992) 283-290.

[25] C. Yang, P.D. Mariner, J.N. Nahreini, K.S. Anseth, Cell-mediated delivery of glucocorticoids from

thiol-ene hydrogels, Journal of Controlled Release, 162 (2012) 612-618.

[26] K.C. Koehler, K.S. Anseth, C.N. Bowman, Diels-alder mediated controlled release from a poly(ethylene

glycol) based hydrogel, Biomacromolecules, 14 (2013) 538-547.

[27] C.E. Hoyle, C.N. Bowman, Thiol–Ene Click Chemistry, Angewandte Chemie International Edition, 49

(2010) 1540-1573.

[28] R. Langer, N. Peppas, Chemical and Physical Structure of Polymers as Carriers for Controlled Release

of Bioactive Agents: A Review, Journal of Macromolecular Science, Part C, 23 (1983) 61-126.

[29] B. Amsden, Solute Diffusion within Hydrogels. Mechanisms and Models, Macromolecules, 31 (1998)

8382-8395.

[30] L. Masaro, X.X. Zhu, Physical models of diffusion for polymer solutions, gels and solids, Progress in

Polymer Science, 24 (1999) 731-775.

[31] J. Siepmann, H. Kranz, R. Bodmeier, N.A. Peppas, HPMC-matrices for controlled drug delivery: A new

model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics,

Pharm Res, 16 (1999) 1748-1756.

[32] S. Grijalvo, J. Mayr, R. Eritja, D.D. Diaz, Biodegradable liposome-encapsulated hydrogels for biomedical

applications: a marriage of convenience, Biomaterials Science, 4 (2016) 555-574.

[33] E. Josef, K. Barat, I. Barsht, M. Zilberman, H. Bianco-Peled, Composite hydrogels as a vehicle for

releasing drugs with a wide range of hydrophobicities, Acta Biomaterialia, 9 (2013) 8815-8822.

[34] R. Raj, P. Mongia, A. Ram, N.K. Jain, Enhanced skin delivery of aceclofenac via hydrogel-based solid

lipid nanoparticles, Artificial Cells, Nanomedicine, and Biotechnology, 44 (2016) 1434-1439.

[35] F.H. Nasr, S. Khoee, M.M. Dehghan, S.S. Chaleshtori, A. Shafiee, Preparation and Evaluation of Contact

Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery,

Biomacromolecules, 17 (2016) 485-495.

[36] L. Xiao, Z. Tong, Y. Chen, D.J. Pochan, C.R. Sabanayagam, X. Jia, Hyaluronic Acid-Based Hydrogels

Containing Covalently Integrated Drug Depots: Implication for Controlling Inflammation in Mechanically

Stressed Tissues, Biomacromolecules, 14 (2013) 3808-3819.

[37] A. Billard, L. Pourchet, S. Malaise, P. Alcouffe, A. Montembault, C. Ladaviere, Liposome-loaded

chitosan physical hydrogel: Toward a promising delayed-release biosystem, Carbohydrate Polymers, 115

(2015) 651-657.

[38] N. El Kechai, E. Mamelle, Y. Nguyen, N. Huang, V. Nicolas, P. Chaminade, S. Yen-Nicolaÿ, C. Gueutin,

B. Granger, E. Ferrary, F. Agnely, A. Bochot, Hyaluronic acid liposomal gel sustains delivery of a corticoid

to the inner ear, Journal of Controlled Release, 226 (2016) 248-257.

[39] G. D’Ayala, M. Malinconico, P. Laurienzo, Marine Derived Polysaccharides for Biomedical Applications:

Chemical Modification Approaches, Molecules, 13 (2008) 2069.

[40] A. Basu, K.R. Kunduru, E. Abtew, A.J. Domb, Polysaccharide-Based Conjugates for Biomedical

Applications, Bioconjugate Chemistry, 26 (2015) 1396-1412.

[41] A.B.M. Fakrul Alam, M.I.H. Mondal, Utilization of cellulosic wastes in textile and garment industries. I.

Synthesis and grafting characterization of carboxymethyl cellulose from knitted rag, Journal of Applied

Polymer Science, 128 (2013) 1206-1212.

[42] N. Devi, T.K. Maji, Preparation and Evaluation of Gelatin/Sodium Carboxymethyl Cellulose

Polyelectrolyte Complex Microparticles for Controlled Delivery of Isoniazid, AAPS PharmSciTech, 10 (2009)

1412.

[43] S.-F. Ng, N. Jumaat, Carboxymethyl cellulose wafers containing antimicrobials: A modern drug delivery

system for wound infections, European Journal of Pharmaceutical Sciences, 51 (2014) 173-179.

[44] A. Salama, M. El-Sakhawy, S. Kamel, Carboxymethyl cellulose based hybrid material for sustained

release of protein drugs, International Journal of Biological Macromolecules.

[45] S. Lee, Y.H. Park, C.S. Ki, Fabrication of PEG–carboxymethylcellulose hydrogel by thiol-norbornene

photo-click chemistry, International Journal of Biological Macromolecules, 83 (2016) 1-8.

[46] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good

Reactions, Angewandte Chemie International Edition, 40 (2001) 2004-2021.

[47] Y. Jiang, J. Chen, C. Deng, E.J. Suuronen, Z. Zhong, Click hydrogels, microgels and nanogels: Emerging

platforms for drug delivery and tissue engineering, Biomaterials, 35 (2014) 4969-4985.

[48] H.K. Lau, K.L. Kiick, Opportunities for Multicomponent Hybrid Hydrogels in Biomedical Applications,

Biomacromolecules, 16 (2015) 28-42.

[49] D.A. Ossipov, J. Hilborn, Poly(vinyl alcohol)-Based Hydrogels Formed by “Click Chemistry”,

Macromolecules, 39 (2006) 1709-1718.

[50] V. Crescenzi, L. Cornelio, C. Di Meo, S. Nardecchia, R. Lamanna, Novel Hydrogels via Click Chemistry: 

Synthesis and Potential Biomedical Applications, Biomacromolecules, 8 (2007) 1844-1850.

[51] G. Testa, C. Di Meo, S. Nardecchia, D. Capitani, L. Mannina, R. Lamanna, A. Barbetta, M. Dentini,

Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid, International

Journal of Pharmaceutics, 378 (2009) 86-92.

[52] C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels−Alder Click Cross-Linked Hyaluronic Acid Hydrogels for

Tissue Engineering, Biomacromolecules, 12 (2011) 824-830.

[53] S.C. Owen, S.A. Fisher, R.Y. Tam, C.M. Nimmo, M.S. Shoichet, Hyaluronic acid click hydrogels emulate

the extracellular matrix, Langmuir, 29 (2013) 7393-7400.

[54] J. Mergy, A. Fournier, E. Hachet, R. Auzély-Velty, Modification of polysaccharides via thiol-ene

chemistry: A versatile route to functional biomaterials, Journal of Polymer Science Part A: Polymer

Chemistry, 50 (2012) 4019-4028.

[55] P.M. Kharkar, M.S. Rehmann, K.M. Skeens, E. Maverakis, A.M. Kloxin, Thiol–ene Click Hydrogels for

Therapeutic Delivery, ACS Biomaterials Science & Engineering, 2 (2016) 165-179.

[56] O. Yom-Tov, D. Seliktar, H. Bianco-Peled, PEG-Thiol based hydrogels with controllable properties,

European Polymer Journal, 74 (2016) 1-12.

[57] J. Hu, Y. Hou, H. Park, B. Choi, S. Hou, A. Chung, M. Lee, Visible light crosslinkable chitosan hydrogels

for tissue engineering, Acta Biomaterialia, 8 (2012) 1730-1738.

[58] H. Shih, C.-C. Lin, Visible-Light-Mediated Thiol-Ene Hydrogelation Using Eosin-Y as the Only

Photoinitiator, Macromolecular Rapid Communications, 34 (2013) 269-273.

[59] A.B. Lowe, Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials

synthesis and modification, Polymer, 55 (2014) 5517-5549.

[60] P.D. Halphen, T.C. Owen, Carboxyalthioacrylates, The Journal of Organic Chemistry, 38 (1973)

3507-3510.

[61] V.X. Truong, A.P. Dove, Organocatalytic, regioselective nucleophilic "click" addition of thiols to

propiolic acid esters for polymer-polymer coupling, Angewandte Chemie - International Edition, 52 (2013)

4132-4136.

69

[62] V.X. Truong, M.P. Ablett, S.M. Richardson, J.A. Hoyland, A.P. Dove, Simultaneous Orthogonal

Dual-Click Approach to Tough, in-Situ-Forming Hydrogels for Cell Encapsulation, Journal of the American

Chemical Society, 137 (2015) 1618-1622.

71

Les hydrogels de

Documents relatifs