• Aucun résultat trouvé

CHAPTER 4 DISCUSSION AND CONCLUSION

4.5 Conclusion

Potato common scab incidence can be effectively reduced by the production of scab resistant cultivars. Since TA is marked as the pathogenicity determinant, our lab has regenerated TA- habituated somaclones by adapting Yukon Gold calli to gradually increasing TA concentrations. Yukon Gold somaclones, YG8, and YG32 showed reduced scab index with lesser lesions development on their tubers surface compared to the original cultivar YGP. We hypothesized that Yukon Gold somaclones with improved scab resistance would accumulate higher amounts of ferritin and iron in their tubers than those of YGP contributing to a defense mechanism against bacterial pathogen S. scabiei causing common scab. To begin with, the iron distribution was observed close to the periderm region of mature tubers from YG8 and YG32 somaclones using the Perl’s/DAB staining method which did not appear in the case of YGP.

However, quantification analysis revealed the increased accumulation of iron in tuber flesh of YG somaclones compared to YGP. It is possible that iron may be evenly distributed throughout the tubers of YG8 and YG32 somaclones. Subcellular localization of iron using confocal microscopy in these somaclonal tubers may be beneficial to further investigate the changes in comparison to YGP. Additionally, we speculate a competition between YG somaclones and S.

scabiei to accumulate iron as S. scabiei showed induction of expression of genes involved in the synthesis of a siderophore in the presence of microtubers obtained from YG somaclones, and at the same time, these microtubers accumulated higher amounts of iron compared to those of YGP. Further transcriptomic analyses on the genome of S. scabiei grown with and without the presence of YG somaclones could further help to identify other genes that might respond to change in iron levels. Moreover, YG8 and YG32 minitubers grown in the presence of S.

scabiei for 17 days showed a reduction in the severity of common scab in contrast to YGP. In fact, YG32 minitubers strongly expressed the FER1 gene after 17 days post-infection

69 suggesting its possible involvement in plant defense. However, the expression levels of FER1 in YG32 were relatively lower during the early stages of infection in comparison to non-infected YG32 minitubers. Addition of siderophore, deferoxamine mesylate seems to favor bacteria as it increased the common scab index in YG32 somaclone, but YG32 minitubers still showed a significant increase in FER1 expression after 17 days. This again suggests that YG32 somaclone may be expressing ferritin as a part of defense response against common scab.

Knocking out the FER1 gene in these somaclones could also help in better understanding its role under the same conditions. Somaclones from other potato cultivars namely Kennebec and Envol also point out the possibility of plants expressing ferritin as part of a defense mechanism against S. scabiei. These results indicate a strong link of ferritin with higher resistance of TA-habituated somaclones to common scab. Proteomic analyses could be performed on the somaclones from other cultivars in comparison to their original cultivar to check the abundance of ferritin as well. To sum up, this study has provided better knowledge for resistance to common scab, and it can be used as a reference for further investigation on the role of plant ferritin in disease resistance.

71 BIBLIOGRAPHY

Abdul-Tehrani, H., Hudson, A. J., Chang, Y. S., Timms, A. R., Hawkins, C., Williams, J. M., Harrison, P. M., Guest, J. R., & Andrews, S. C. (1999). Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. Journal of Bacteriology, 181(5), 1415–1428. https://doi.org/10.1128/jb.181.5.1415-1428.

Agrios, G. N. (2005). Plant diseases caused by prokaryotes. Plant Pathology, 510–609.

https://doi.org/10.1016/b978-0-12-044563-9.50016-5

Almekinders, C. J. M., & Struik, P. C. (1996). Shoot development and flowering in potato (Solanum tuberosum L.). Potato Research, 39(4), 581–607.

https://doi.org/10.1007/BF02358477

Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis.

FEMS Microbiology Reviews, 27(2–3), 215–237. https://doi.org/10.1016/S0168-6445(03)00055-X

Arnaud, N., Murgia, I., Boucherez, J., Briat, J. F., Cellier, F., & Gaymard, F. (2006). An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. Journal of Biological Chemistry, 281(33), 23579–23588.

https://doi.org/10.1074/jbc.M602135200

Arosio, P., Ingrassia, R., & Cavadini, P. (2008). Ferritins: A family of molecules for iron storage, antioxidation and more. Biochimica et Biophysica Acta (BBA) - General Subjects, 1790(7), 589–599. https://doi.org/10.1016/j.bbagen.2008.09.004

Aznar, A., Chen, N. W. G., Rigault, M., Riache, N., Joseph, D., Desmaële, D., Mouille, G., Boutet, S., Soubigou-Taconnat, L., Renou, J. P., Thomine, S., Expert, D., & Dellagi, A. (2014).

72 Scavenging iron: A novel mechanism of plant immunity activation by microbial siderophores.

Plant Physiology, 164(4), 2167–2183. https://doi.org/10.1104/pp.113.233585

Aznar, A., Patrit, O., Berger, A., & Dellagi, A. (2015). Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii. Molecular Plant Pathology, 16(5), 521–528.

https://doi.org/10.1111/mpp.12208

Babcock, M. J., Eckwall, E. C., & Schottel, J. L. (1993). Production and regulation of potato-scab-inducing phytotoxins by Streptomyces scabies. Journal of General Microbiology, 139(7), 1579–1586. https://doi.org/10.1099/00221287-139-7-1579

Baltz, R. H. (2011). Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. Journal of Industrial Microbiology and Biotechnology, 38(11), 1747–1760. https://doi.org/10.1007/s10295-011-1022-8

Barry, S. M., Kers, J. A., Johnson, E. G., Song, L., Aston, P. R., Patel, B., Krasnoff, S. B., Crane, B. R., Gibson, D. M., Loria, R., & Challis, G. L. (2012). Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nature Chemical Biology, 8(10), 814–816. https://doi.org/10.1038/nchembio.1048

Beaudoin, N., Isayenka, I., Ducharme, A., Massie, S., Gagnon, A., Hogue, R., Beaulieu, C., &

Michaud, D. (2021). Habituation to thaxtomin a increases resistance to common scab in “Russet

Burbank” potato. PLoS ONE, 16(6 June 2021), 1–15.

https://doi.org/10.1371/journal.pone.0253414

Bellotti, D., & Remelli, M. (2021). Deferoxamine b: A natural, excellent and versatile metal chelator. Molecules, 26(11), 1–21. https://doi.org/10.3390/molecules26113255

Bignell, D. R. D., Seipke, R. F., Huguet-Tapla, J. C., Chambers, A. H., Parry, R. J., & Lorla, R.

(2010). Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that

73 contributes to plant-microbe interactions. Molecular Plant-Microbe Interactions, 23(2), 161–

175. https://doi.org/10.1094/MPMI-23-2-0161

Boughammoura, A., Franza, T., Dellagi, A., Roux, C., Matzanke-Markstein, B., & Expert, D.

(2007). Ferritins, bacterial virulence and plant defence. BioMetals, 20(3–4), 347–353.

https://doi.org/10.1007/s10534-006-9069-0

Braun, S., Gevens, A., Charkowski, A., Allen, C., & Jansky, S. (2017). Potato common scab: a review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. American Journal of Potato Research, 94(4), 283–296.

https://doi.org/10.1007/s12230-017-9575-3

Briat, J. F., Ravet, K., Arnaud, N., Duc, C., Boucherez, J., Touraine, B., Cellier, F., & Gaymard, F. (2010). New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. In Annals of Botany.

https://doi.org/10.1093/aob/mcp128

Brochu, V., Girard-Martel, M., Duval, I., Lerat, S., Grondin, G., Domingue, O., Beaulieu, C., &

Beaudoin, N. (2010). Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis. BMC Plant Biology, 10(1), 272. https://doi.org/10.1186/1471-2229-10-272

Brune, A., Urbach, W., & Dietz, K. ‐J. (1995). Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd‐, Mo‐, Ni‐

and Zn‐stress. New Phytologist, 129(3), 403–409. https://doi.org/10.1111/j.1469-8137.1995.tb04310.x

Busi, M. V., Maliandi, M. V., Valdez, H., Clemente, M., Zabaleta, E. J., Araya, A., & Gomez-Casati, D. F. (2006). Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. Plant Journal, 48(6), 873–882.

74 https://doi.org/10.1111/j.1365-313X.2006.02923.x

Cartron, M. L., Maddocks, S., Gillingham, P., Craven, C. J., & Andrews, S. C. (2006). Feo - Transport of ferrous iron into bacteria. BioMetals, 19(2), 143–157.

https://doi.org/10.1007/s10534-006-0003-2

Culture de la pomme de terre. 2020. « Types 1660 de productions ».

1661 https://www.mapaq.gouv.qc.ca/fr/Productions/Production/Pages/Pomme-de-terre.aspx.

Davis, J. R. (1976). Influence of soil moisture and fungicide treatments on common scab and mineral content of potatoes. Phytopathology, 66(2), 228. https://doi.org/10.1094/phyto-66-228

De Domenico, I., Ward, D. M. V., & Kaplan, J. (2009). Specific iron chelators determine the route of ferritin degradation. Blood, 114(20), 4546–4551. https://doi.org/10.1182/blood-2009-05-224188

De Serrano, L. O. (2017). Biotechnology of siderophores in high-impact scientific fields.

Biomolecular Concepts, 8(3–4), 169–178. https://doi.org/10.1515/bmc-2017-0016

Deák, M., Horváth, G. V, Davletova, S., Török, K., Sass, L., Vass, I., Barna, B., Király, Z., &

Dudits, D. (1999). Plants ectopically expressing the ironbinding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotechnology, 17(2), 192–196.

https://doi.org/10.1038/6198

Dees, M. W., & Wanner, L. A. (2012). In search of better management of potato common scab.

Potato Research, 55(3–4), 249–268. https://doi.org/10.1007/s11540-012-9206-9

Dellagi, A., Rigault, M., Segond, D., Roux, C., Kraepiel, Y., Cellier, F., Briat, J. F., Gaymard, F., & Expert, D. (2005). Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Plant Journal, 43(2), 262–272.

75 https://doi.org/10.1111/j.1365-313X.2005.02451.x

Dellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P., & Expert, D.

(2009). Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiology, 150(4), 1687–1696.

https://doi.org/10.1104/pp.109.138636

Duval, I., Brochu, V., Simard, M., Beaulieu, C., & Beaudoin, N. (2005). Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta, 222(5), 820–

831. https://doi.org/10.1007/s00425-005-0016-z

Errakhi, R., Dauphin, A., Meimoun, P., Lehner, A., Reboutier, D., Vatsa, P., Briand, J., Madiona, K., Rona, J. P., Barakate, M., Wendehenne, D., Beaulieu, C., & Bouteau, F. (2008).

An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. Journal of Experimental Botany, 59(15), 4259–4270. https://doi.org/10.1093/jxb/ern267

Evans, N. E., Foulger, D., Farrer, L., & Bright, S. W. J. (1986). Somaclonal variation in explant-derived potato clones over three tuber generations. Euphytica, 35(2), 353–361.

https://doi.org/10.1007/BF00021843

Facey, P. D., Hitchings, M. D., Saavedra-Garcia, P., Fernandez-Martinez, L., Dyson, P. J., &

Del Sol, R. (2009). Streptomyces coelicolor Dps-like proteins; differential dual roles in response to stress during vegetative growth and in nucleoid condensation during reproductive cell division. Molecular Microbiology, 73(6), 1186–1202. https://doi.org/10.1111/j.1365-2958.2009.06848.x

Facey, P. D., Hitchings, M. D., Williams, J. S., Skibinski, D. O. F., Dyson, P. J., & De Sol, R.

(2013). The Evolution of an osmotically inducible dps in the genus Streptomyces. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060772

76 Fagard, M., Dellagi, A., Roux, C., Périno, C., Rigault, M., Boucher, V., Shevchik, V. E., &

Expert, D. (2007). Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Molecular Plant-Microbe Interactions, 20(7), 794–805.

https://doi.org/10.1094/MPMI-20-7-0794

FAOSTAT. (2020). Crops. FAOSTAT. « Countries - Select All; Regions - World + (Total);

Elements - Production Quantity; Items - Potatoes; Years - 2020 (accessed December 28, 2021).

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Faostat++.+2020+&btnG=

Firman, D. M., O’Brien, D. J., & Allen, E. J. (1991). Leaf and flower initiation in potato (Solanum tuberosum) sprouts and stems in relation to number of nodes and tuber initiation. The Journal of Agricultural Science, 117(1), 61–74. https://doi.org/10.1017/S0021859600078977

Francis, I. M., Jourdan, S., Fanara, S., Loria, R., & Rigali, S. (2015). The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. MBio, 6(2), 1–6.

https://doi.org/10.1128/mBio.02018-14

Franza, T., Mahé, B., & Expert, D. (2005). Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Molecular Microbiology, 55(1), 261–275. https://doi.org/10.1111/j.1365-2958.2004.04383.x

García Mata, C., Lamattina, L., & Cassia, R. O. (2001). Involvement of iron and ferritin in the potato-Phytophthora infestans interaction. European Journal of Plant Pathology, 107(5), 557–

562. https://doi.org/10.1023/A:1011228317709

Giroux, L. (2020). Études protéomiques de l’interaction entre Streptomyces scabies et les tubercules de pomme de terre ou la subérine. Thèse de doctorat. Université de Sherbrooke.

Goyer, C., Vachon, J., & Beaulieu, C. (1998). Pathogenicity of Streptomyces scabies mutants

77 altered in thaxtomin a production. Phytopathology, 88(5), 442–445.

https://doi.org/10.1094/PHYTO.1998.88.5.442

Gross, J., Stein, R. J., Fett-Neto, A. G., & Fett, J. P. (2003). Iron homeostasis related genes in rice. Genetics and Molecular Biology, 26(4), 477–497. https://doi.org/10.1590/S1415-47572003000400012

Habashi, F., & City, Q. (2013). Encyclopedia of Metalloproteins. In Encyclopedia of Metalloproteins (Vol. 02, Issue Iii). https://doi.org/10.1007/978-1-4614-1533-6

Haldar, S., Bevers, L. E., Tosha, T., & Theil, E. C. (2011). Moving iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit. Journal of Biological Chemistry, 286(29), 25620–25627. https://doi.org/10.1074/jbc.M110.205278

Healy, F. G., Krasnoff, S. B., Wach, M., Gibson, D. M., & Loria, R. (2002). Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies.

Journal of Bacteriology, 184(7), 2019–2029. https://doi.org/10.1128/JB.184.7.2019-2029.2002

Hill, J., & Lazarovits, G. (2005). A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Canadian Journal of Plant Pathology, 27(1), 46–52.

https://doi.org/10.1080/07060660509507192

Hutchinson M. (2005). Evaluation of chloropicrin soil fumigation programs for potato ( Solanum Tuberosum L.) Production. State Hort. Soc, 118, 129–131. http://fawn.ifas.

Ilari, A., Stefanini, S., Chiancone, E., & Tsernoglou, D. (2000). The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nature Structural Biology, 7(1), 38–43. https://doi.org/10.1038/71236

Isayenka, Iauhenia. (2020). Augmentation de la résistance à la gale commune chez des variétés

78 de pommes de terre produites au Québec. Thèse de doctorat. Université de Sherbrooke.

Ivanov, R., Brumbarova, T., & Bauer, P. (2012). Fitting into the harsh reality: Regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant, 5(1), 27–42.

https://doi.org/10.1093/mp/ssr065

Izuhara, M., Takamune, K., & Takata, R. (1991). Cloning and sequencing of an Escherichia coli K12 gene which encodes a polypeptide having similarity to the human ferritin H subunit.

MGG Molecular & General Genetics, 225(3), 510–513. https://doi.org/10.1007/BF00261694

Johnson, E. G., Krasnoff, S. B., Bignell, D. R. D., Chung, W. C., Tao, T., Parry, R. J., Loria, R.,

& Gibson, D. M. (2009). 4-Nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway. Molecular Microbiology, 73(3), 409–

418. https://doi.org/10.1111/j.1365-2958.2009.06780.x

Johnston, G. R., & Rowberry, R. G. (1981). Yukon Gold: A new yellow-fleshed, medium-early, high quality table and French-fry cultivar. American Potato Journal, 58(5), 241–244.

https://doi.org/10.1007/BF02853905

Joshi, M. V., Bignell, D. R. D., Johnson, E. G., Sparks, J. P., Gibson, D. M., & Loria, R. (2007).

The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Molecular Microbiology, 66(3), 633–642. https://doi.org/10.1111/j.1365-2958.2007.05942.x

Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation

in plants. Plant Molecular Biology, 43(2–3), 179–188.

https://doi.org/10.1023/a:1006423110134

Kawano, I., Oda, T., Ishimatsu, A., & Muramatsu, T. (1996). Inhibitory effect of the iron chelator desferrioxamine (Desferal) on the generation of activated oxygen species by

79 Chattonella marina. Marine Biology, 126(4), 765–771. https://doi.org/10.1007/BF00351343

Kers, J. A., Wach, M. J., Krasnoff, S. U., Widom, J., Cameron, K. D., Dukhalid, R. A., Gibson, D. M., Crane, B. R., & Loria, R. (2004). Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 429(6987), 79–82. https://doi.org/10.1038/nature02504

Kidane, T. Z., Sauble, E., & Linder, M. C. (2006). Release of iron from ferritin requires lysosomal activity. American Journal of Physiology-Cell Physiology, 291(3), C445–C455.

https://doi.org/10.1152/ajpcell.00505.2005

King, R. R., Lawrence, C. H., Clark, M. C., & Calhoun, L. A. (1989). Isolation and characterization of phytotoxins associated with Streptomyces scabies. Journal of the Chemical Society, Chemical Communications, 849(13), 849–850. https://doi.org/10.1039/C39890000849 Kobayashi, T., & Nishizawa, N. K. (2012). Iron Uptake, Translocation, and Regulation in Higher Plants. Annual Review of Plant Biology, 63(1), 131–152.

https://doi.org/10.1146/annurev-arplant-042811-105522

Kodani, S., Bicz, J., Song, L., Deeth, R. J., Ohnishi-Kameyama, M., Yoshida, M., Ochi, K., &

Challis, G. L. (2013). Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Organic and Biomolecular Chemistry, 11(28), 4686–4694. https://doi.org/10.1039/c3ob40536b

Kumar, G. N. M., Iyer, S., & Knowles, N. R. (2007). Extraction of RNA from fresh, frozen, and lyophilized tuber and root tissues. Journal of Agricultural and Food Chemistry, 55(5), 1674–

1678. https://doi.org/10.1021/jf062941m

Labidi Safa. (2020). Amélioration de la résistance de la pomme de terre à la gale commune par l’habituation de cals à la thaxtomine a et le traitement au 2,4-d. Thèse de doctorat. Université de Sherbrooke.

80 Lacey, M. J., & Wilson, C. R. (2001). Relationship of common scab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. Journal of Phytopathology, 149(11–12), 679–683. https://doi.org/10.1046/j.1439-0434.2001.00693.x

Lachman, J., & Hamouz, K. (2005). Red and purple coloured potatoes as a significant antioxidant source in human nutrition - A review. In Plant, Soil and Environment (Vol. 51, Issue 11, pp. 477–482). https://doi.org/10.17221/3620-pse

Lambert, D. H., & Loria, R. (1989a). Streptomyces acidiscabies sp. nov. International Journal of Systematic Bacteriology, 39(4), 393–396. https://doi.org/10.1099/00207713-39-4-393

Lambert, D. H., & Loria, R. (1989b). Streptomyces scabies sp. nov., nom. rev. International Journal of Systematic Bacteriology, 39(4), 387–392. https://doi.org/10.1099/00207713-39-4-387

Lapwood, D. H., Wellings, L. W., & Hawkins, J. H. (1973). Irrigation as a Practical Means to Control Potato Common Scab (Streptomyces scabies). Plant Pathology, 20(4), 157–163.

https://doi.org/10.1111/j.1365-3059.1971.tb00536.x

Larkin, R. P., Griffin, T. S., & Honeycutt, C. W. (2010). Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Disease, 94(12), 1491–1502. https://doi.org/10.1094/PDIS-03-10-0172

Larkin, R. P., Honeycutt, C. W., Griffin, T. S., Olanya, O. M., He, Z., & Halloran, J. M. (2011).

Cumulative and residual effects of different potato cropping system management strategies on soilborne diseases and soil microbial communities over time. Plant Pathology, 66(3), 437–449.

https://doi.org/10.1111/ppa.12584

Lauzier, A., Goyer, C., Ruest, L., Brzezinski, R., Crawford, D. L., & Beaulieu, C. (2002). Effect

81 of amino acids on thaxtomin A biosynthesis by Streptomyces scabies. Canadian Journal of Microbiology, 48(4), 359–364. https://doi.org/10.1139/w02-031

Lawrence, C. H. (1990). Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology, 80(7), 606. https://doi.org/10.1094/Phyto-80-606

Legay, S., Guignard, C., Ziebel, J., & Evers, D. (2012). Iron uptake and homeostasis related genes in potato cultivated in vitro under iron deficiency and overload. Plant Physiology and Biochemistry, 60, 180–189. https://doi.org/10.1016/j.plaphy.2012.08.003

Lerat, S., Babana, A. H., Oirdi, M. El, Hadrami, A. El, Daayf, F., Beaudoin, N., Bouarab, K., &

Beaulieu, C. (2009). Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynthesis in tobacco and Arabidopsis thaliana. Plant Cell Reports, 28(12), 1895–1903.

https://doi.org/10.1007/s00299-009-0792-1

Lerat, S., Simao-Beaunoir, A.-M., Wu, R., Beaudoin, N., & Beaulieu, C. (2010). Involvement of the plant polymer suberin and the disaccharide cellobiose in triggering thaxtomin A biosynthesis, a phytotoxin produced by the pathogenic agent Streptomyces scabies.

Phytopathology, 100(1), 91–96. https://doi.org/10.1094/PHYTO-100-1-0091

Lerat, S., Simao-Beaunoir, A. M., & Beaulieu, C. (2009). Genetic and physiological determinants of Streptomyces scabies pathogenicity. Molecular Plant Pathology, 10(5), 579–

585. https://doi.org/10.1111/j.1364-3703.2009.00561.x

Lescure, A. M., Proudhon, D., Pesey, H., Ragland, M., Theil, E. C., & Briat, J. F. (1991). Ferritin gene transcription is regulated by iron in soybean cell cultures. Proceedings of the National Academy of Sciences, 88(18), 8222–8226. https://doi.org/10.1073/pnas.88.18.8222

Li, C., Hu, X., & Zhao, G. (2009). Two different H-type subunits from pea seed (Pisum sativum)

82 ferritin that are responsible for fast Fe(II) oxidation. Biochimie, 91(2), 230–239.

https://doi.org/10.1016/j.biochi.2008.09.008

Li, Y., Liu, J., Díaz-Cruz, G., Cheng, Z., & Bignell, D. R. D. (2019). Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review. Microbiology (United Kingdom), 165(10), 1025–1040. https://doi.org/10.1099/mic.0.000818

Lobreaux, S., & Briat, J. F. (1991). Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochemical Journal, 274(2), 601–606.

https://doi.org/10.1042/bj2740601

Lobreaux, S., Hardy, T., & Briat, J. F. (1993). Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO Journal, 12(2), 651–657. https://doi.org/10.1002/j.1460-2075.1993.tb05698.x

Lobreaux, S., Yewdall, S. J., Briat, J. F., & Harrison, P. M. (1992). Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochemical Journal, 288(3), 931–939. https://doi.org/10.1042/bj2880931

Loria, R., Bignell, D. R. D., Moll, S., Huguet-Tapia, J. C., Joshi, M. V., Johnson, E. G., Seipke, R. F., & Gibson, D. M. (2008). Thaxtomin biosynthesis: The path to plant pathogenicity in the genus Streptomyces. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 94(1), 3–10. https://doi.org/10.1007/s10482-008-9240-4

Loria, R., Kers, J., & Joshi, M. (2006). Evolution of plant pathogenicity in Streptomyces. Annual

Review of Phytopathology, 44(1), 469–487.

https://doi.org/10.1146/annurev.phyto.44.032905.091147

Masuda, T., Goto, F., & Yoshihara, T. (2001). A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. Journal of Biological Chemistry, 276(22), 19575–

83 19579. https://doi.org/10.1074/jbc.M011399200

Meguro, R., Asano, Y., Odagiri, S., Li, C., Iwatsuki, H., & Shoumura, K. (2007). Nonheme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review. Archives of Histology and Cytology, 70(1), 1–19. https://doi.org/10.1679/aohc.70.1

Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3), 413–451.

https://doi.org/10.1128/mmbr.00012-07

Morales-Garzon, J. F. (2018). Potatoes. In The Encyclopedia of Archaeological Sciences (pp.

1–4). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119188230.saseas0472

Nawrath, C. (2002). The biopolymers cutin and suberin. The Arabidopsis Book, 1, e0021.

https://doi.org/10.1199/tab.0021

Neema, C., Laulhère, J., & Expert, D. (1993). Iron deficiency induced by chrysobactin in Saintpaulia leaves inoculated with Erwinia chrysanthemi. Plant Physiology 102(3), 967–973.

http://www.jstor.org/stable/4275273

Oey, I., Faridnia, F., Leong, S. Y., Burritt, D. J., & Liu, T. (2017). Determination of Pulsed Electric Fields Effects on the Structure of Potato Tubers. In D. Miklavčič (Ed.), Handbook of Electroporation (Vols. 1–4, pp. 1489–1507). Springer International Publishing.

https://doi.org/10.1007/978-3-319-32886-7_151

Ohata, T., Kanazawa, K., Mihashi, S., Kishi-Nishizawa, N., Fushiya, S., Nozoe, S., Chino, M., Mori, S., Fushiya, S., Nozoe, S., Ohata, T., & Mihashi, S. (1993). Biosynthetic pathway of phytosiderophores in iron-deficient graminaceous plants: Development of an assay system for the detection of nicotianamine aminotransferase activity. Soil Science and Plant Nutrition,

84 39(4), 745–749. https://doi.org/10.1080/00380768.1993.10419193

Paradis, E., Goyer, C., Hodge, N. C., Hogue, R., Stall, R. E., & Beaulieu, C. (1994). Fatty acid and protein profiles of Streptomyces scabies strains isolated in eastern Canada. International Journal of Systematic Bacteriology, 44(3), 561–564. https://doi.org/10.1099/00207713-44-3-561

Patil, V., Kawar, P., S, S., & Bhardwaj, V. (2016). Biology of Solanum tuberosum (Potato):

Series of crop specific biology document. Ministry of Environment, Forest and Climate Change, December, 1–28. https://www.researchgate.net/publication/311861850%0ABiology

Petit, J. M., Briat, J. F., & Lobréaux, S. (2001). Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochemical Journal, 359(3), 575–

582. https://doi.org/10.1042/0264-6021:3590575

Petit, J. M., Van Wuytswinkel, O., Briat, J. F., & Lobréaux, S. (2001). Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. Journal of Biological Chemistry, 276(8), 5584–5590.

https://doi.org/10.1074/jbc.M005903200

Potato scab (2021). https://www.vegetables.cornell.edu/pest-management/disease-factsheets/potatoscab/#:~:text=The%20term%20%E2%80%9Ccommon%20scab%E2%80%9 D%20generally,scabies. Image retreived in 2021.

Phillips, R. L., Kaeppler, S. M., & Olhoft, P. (1994). Genetic instability of plant tissue cultures:

Breakdown of normal controls. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 91, Issue 12, pp. 5222–5226).

https://doi.org/10.1073/pnas.91.12.5222

Radzki, W., Gutierrez Mañero, F. J., Algar, E., Lucas García, J. A., García-Villaraco, A., &

85 Ramos Solano, B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek, 104(3), 321–330.

https://doi.org/10.1007/s10482-013-9954-9

Ragland, M., Briat, J. F., Gagnon, J., Laulhere, J. P., Massenet, O., & Theil, E. C. (1990).

Ragland, M., Briat, J. F., Gagnon, J., Laulhere, J. P., Massenet, O., & Theil, E. C. (1990).