• Aucun résultat trouvé

Les lésions de la moelle épinière (LM) sont une cause importante de déficits moteurs et sensoriels, incluant des difficultés à la marche et le développement de douleur. Chez l’humain, une lésion incomplète résulte fréquemment en une incapacité totale de générer des mouvements volontaires. Les conséquences de la perte d’autonomie liée aux difficultés à la marche sont majeures tant pour l’individu que son entourage. Ce constant a conduit au développement d’un pôle thérapeutique et de recherche qui s’intéresse à l’optimisation de la fonction par l’entraînement. Toutefois, les résultats cliniques ne sont pas satisfaisants.

En contraste avec ce qui est observé chez les patients ayant une LM, l’entraînement locomoteur sur tapis roulant engendre d’importantes améliorations fonctionnelles dans plusieurs modèles animaux de LM. Il a d’abord été démontré chez le chat, et plus récemment chez le rat et la souris, que l’animal peut générer le patron locomoteur avec ses pattes postérieures comprenant des phases de support et de balancement adéquatement coordonnées en alternance inter-membre, et ce, même après une section spinale complète. Ce phénomène surprenant est médié par la réexpression de réseaux locomoteurs comprenant un générateur de patron central (CPG) et différentes voies réflexes situés dans la moelle épinière lombaire. De plus, l’entraînement sur tapis roulant accélère cette réexpression locomotrice par des mécanismes d’adaptations plastiques induits par l’activation des réseaux locomoteurs spinaux par les afférences sensorielles.

Les résultats présentés dans cette thèse ajoutent des connaissances sur le potentiel de récupération locomoteur à la suite de différents types de lésions (hémilésion, section) chez la souris. La transposition des découvertes concernant l’adaptation plastique des réseaux locomoteurs spinaux en utilisant le paradigme de double lésion depuis le chat et le rat à la souris est une découverte importante dans le domaine. En montrant qu’une souris ayant récupéré un patron de marche normal après une hémilésion conservait une capacité locomotrice résiduelle du côté de l’hémilésion après une section complète subséquente, nous avons démontré que la souris représente un bon modèle pour étudier la contribution d’adaptations plastiques à la récupération locomotrice médiée par les réseaux locomoteurs spinaux. Cela justifie l’utilisation

de ce modèle dans des études visant à déterminer les composants cellulaires du CPG par une approche génétique et permet d’appliquer les découvertes à d’autres modèles animaux.

Les études de cette thèse ont permis d’identifier deux facteurs qui influencent la récupération locomotrice à la suite d’une section spinale. En premier lieu, nous avons observé dans une première étude, puis confirmé dans une seconde étude, que l’inflammation des muscles lombaires atténue la récupération locomotrice médiée par les réseaux locomoteurs spinaux et que l’entraînement peut prévenir cet effet. En mesurant l’excitabilité du réflexe-H par de stimulations électriques répétées, nous avons montré que l’inflammation des muscles lombaires altère temporairement le recrutement des motoneurones par les afférences Ia en désinhibant la voie réflexe. Ce mécanisme est possiblement impliqué dans l’effet observé au début de la réaction inflammatoire. Toutefois, le déficit locomoteur est probablement causé au moins partiellement par un autre phénomène, incluant l’activation persistante de microglie dans le renflement lombaire par un mécanisme indépendant de KCC2. Ces découvertes ont des implications translationnelles évidentes. Des observations chez les patients LM suggèrent que différents facteurs associés à la lésion ou à son traitement peuvent influencer la récupération fonctionnelle (Dvorak et al., 2017). Notamment, les blessures musculosquelettiques associées à l’étiologie principalement traumatique des LM pourraient diminuer le pronostic de récupération (Noonan et al., 2012). Nos résultats supportent ces observations et proposent que les réseaux locomoteurs spinaux soient influencés par l’inflammation et que l’entraînement locomoteur prévienne cet effet. En deuxième lieu, nous avons démontré que la buspirone, un médicament approuvé par le FDA pour le traitement de l’anxiété, active fortement les réseaux locomoteurs spinaux et permet d’engendrer la locomotion dès le jour 2 après une section spinale chez des souris auparavant complètement paraplégiques. De plus, la buspirone améliore la récupération à long terme associée à l’entraînement en facilitant les adaptations plastiques. Considérant les résultats encourageants d’études précliniques sur la buspirone pour améliorer la locomotion chez les patients ayant une LM, ces découvertes ont des retombées importantes en proposant une contribution des adaptations plastiques spinales à la récupération locomotrice.

Bibliographie

Ahmadi, S., Lippross, S., Neuhuber, W. L., & Zeilhofer, H. U. (2002). PGE(2) selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat

Neurosci, 5(1), 34-40.

Akay, T., Tourtellotte, W. G., Arber, S., & Jessell, T. M. (2014). Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proceedings of the

National Academy of Sciences, 111(47), 16877-16882.

Akazawa, K., Aldridge, J. W., Steeves, J. D., & Stein, R. B. (1982). Modulation of stretch reflexes during locomotion in the mesencephalic cat. J Physiol, 329, 553-567.

Alluin, O., Delivet-Mongrain, H., & Rossignol, S. (2015). Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only. Journal of Neurophysiology, 114(3), 1931-1946. Alluin, O., Karimi-Abdolrezaee, S., Delivet-Mongrain, H., Leblond, H., Fehlings, M. G., &

Rossignol, S. (2011). Kinematic Study of Locomotor Recovery after Spinal Cord Clip Compression Injury in Rats. Journal of Neurotrauma, 28(9), 1963-1981.

Almeida, C., DeMaman, A., Kusuda, R., Cadetti, F., Ravanelli, M. I., Queiroz, A. L., . . . Lucas, G. (2015). Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain. PAIN, 156(3), 504-513.

Alvarez, F. J., Jonas, P. C., Sapir, T., Hartley, R., Berrocal, M. C., Geiman, E. J., . . . Goulding, M. (2005). Postnatal phenotype and localization of spinal cord V1 derived interneurons.

J Comp Neurol, 493(2), 177-192.

Ambalavanar, R., Dessem, D., Moutanni, A., Yallampalli, C., Yallampalli, U., Gangula, P., & Bai, G. (2006). Muscle inflammation induces a rapid increase in calcitonin gene-related peptide (CGRP) mRNA that temporally relates to CGRP immunoreactivity and nociceptive behavior. Neuroscience, 143(3), 875-884.

Ambalavanar, R., Moritani, M., Moutanni, A., Gangula, P., Yallampalli, C., & Dessem, D. (2006). Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. PAIN, 120(1-2), 53-68. Andén, N.-E., Jukes, M. G. M., Lundberg, A., & Vyklický, L. (1966). The Effect of DOPA on

the Spinal Cord 3. Depolarization Evoked in the Central Terminals of Ipsilateral Ia Afferents by Volleys in the Flexor Reflex Afferents. Acta Physiologica Scandinavica,

Andén, N. E., Häggendal, J., Magnusson, T., & Rosengren, E. (1964). The time course of the disappearance of noradrenaline and 5‐hydroxytryptamine in the spinal cord after transection. Acta Physiologica Scandinavica, 62(1‐2), 115-118.

Andersen, P., Eccles, J. C., & Sears, T. A. (1962). Presynaptic Inhibitory Actions: Presynaptic Inhibitory Action of Cerebral Cortex on the Spinal Cord. Nature, 194(4830), 740. Anderson, K. D. (2004). Targeting recovery: priorities of the spinal cord-injured population.

Journal of Neurotrauma, 21(10), 1371-1383.

Andersson, O., & Grillner, S. (1981). Peripheral control of the cat's step cycle I. Phase dependent effects of ramp‐movements of the hip during “fictive locomotion”. Acta Physiologica

Scandinavica, 113(1), 89-101.

Angel, M. J., Jankowska, E., & McCrea, D. A. (2005). Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J

Physiol, 563(Pt 2), 597-610.

Anseloni, V. C. Z., & Gold, M. S. (2008). Inflammation-Induced Shift in the Valence of Spinal GABA-A Receptor–Mediated Modulation of Nociception in the Adult Rat. The Journal

of Pain, 9(8), 732-738.

Antri, M., Barthe, J. Y., Mouffle, C., & Orsal, D. (2005). Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine. Neuroscience Letters, 384(1– 2), 162-167.

Antri, M., Mouffle, C., Orsal, D., & Barthe, J. Y. (2003). 5-HT1A receptors are involved in short- and long-term processes responsible for 5-HT-induced locomotor function recovery in chronic spinal rat. European Journal of Neuroscience, 18(7), 1963-1972. Asgar, J., Zhang, Y., Saloman, J. L., Wang, S., Chung, M. K., & Ro, J. Y. (2015). The role of

TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience, 310, 206-215.

Ballermann, M., & Fouad, K. (2006). Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. European Journal

of Neuroscience, 23(8), 1988-1996.

Barbeau, H., & Rossignol, S. (1987). Recovery of locomotion after chronic spinalization in the adult cat. Brain Research, 412(1), 84-95.

Barbeau, H., & Rossignol, S. (1994). Enhancement of locomotor recovery following spinal cord injury. Current opinion in neurology, 7(6), 517-524.

Barrett, H., McClelland, J. M., Rutkowski, S. B., & Siddall, P. J. (2003). Pain characteristics in patients admitted to hospital with complications after spinal cord injury. Archives of

Physical Medicine and Rehabilitation, 84(6), 789-795.

Barrière, G., Frigon, A., Leblond, H., Provencher, J., & Rossignol, S. (2010). Dual Spinal Lesion Paradigm in the Cat: Evolution of the Kinematic Locomotor Pattern. Journal of

Neurophysiology, 104(2), 1119-1133.

Barrière, G., Leblond, H., Provencher, J., & Rossignol, S. (2008). Prominent Role of the Spinal Central Pattern Generator in the Recovery of Locomotion after Partial Spinal Cord Injuries. The Journal of Neuroscience, 28(15), 3976-3987.

Basso, D. M., Fisher, L. C., Anderson, A. J., Jakeman, L. B., McTigue, D. M., & Popovich, P. G. (2006). Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma, 23(5), 635-659.

Battistuzzo, C. R., Callister, R. J., Callister, R., & Galea, M. P. (2012). A Systematic Review of Exercise Training To Promote Locomotor Recovery in Animal Models of Spinal Cord Injury. Journal of Neurotrauma, 29(8), 1600-1613.

Battistuzzo, C. R., Rank, M. M., Flynn, J. R., Morgan, D. L., Callister, R., Callister, R. J., & Galea, M. P. (2016). Gait recovery following spinal cord injury in mice: Limited effect of treadmill training. The Journal of Spinal Cord Medicine, 39(3), 335-343.

Baumbauer, K. M., Lee, K. H., Puga, D. A., Woller, S. A., Hughes, A. J., & Grau, J. W. (2012). Temporal regularity determines the impact of electrical stimulation on tactile reactivity and response to capsaicin in spinally transected rats. Neuroscience, 227, 119-133. Baumbauer, K. M., Young, E. E., & Joynes, R. L. (2009). Pain and learning in a spinal system:

Contradictory outcomes from common origins. Brain Research Reviews, 61(2), 124- 143.

Beato, M., & Nistri, A. (1998). Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5–HT1 receptor class. Proceedings of the Royal

Society of London. Series B: Biological Sciences, 265(1410), 2073-2080.

Behrends, T., Schomburg, E. D., & Steffens, H. (1983). Facilitatory interaction between cutaneous afferents from low threshold mechanoreceptors and nociceptors in segmental reflex pathways to α-motoneurons. Brain Research, 260(1), 131-134.

Beliez, L., Barrière, G., Bertrand, S. S., & Cazalets, J.-R. (2015). Origin of Thoracic Spinal Network Activity during Locomotor-Like Activity in the Neonatal Rat. The Journal of

Neuroscience, 35(15), 6117-6130.

Belkouch, M., Dansereau, M.-A., Tetreault, P., Biet, M., Beaudet, N., Dumaine, R., . . . Sarret, P. (2014). Functional up-regulation of Nav1.8 sodium channel in Abeta afferent fibers subjected to chronic peripheral inflammation. Journal of Neuroinflammation, 11(1), 45.

Bennett, D. J., De Serres, S. J., & Stein, R. B. (1996). Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activities. J Physiol, 496 ( Pt

3), 837-850.

Biber, K., Tsuda, M., Tozaki‐Saitoh, H., Tsukamoto, K., Toyomitsu, E., Masuda, T., . . . Inoue, K. (2011). Neuronal CCL21 up‐regulates microglia P2X4 expression and initiates neuropathic pain development. The EMBO Journal, 30(9), 1864-1873.

Biggs, J. E., Lu, V. B., Stebbing, M. J., Balasubramanyan, S., & Smith, P. A. (2010). Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization? Mol Pain, 6, 44.

Borowska, J., Jones, C. T., Zhang, H., Blacklaws, J., Goulding, M., & Zhang, Y. (2013). Functional Subpopulations of V3 Interneurons in the Mature Mouse Spinal Cord. The

Journal of Neuroscience, 33(47), 18553-18565.

Boulenguez, P., Liabeuf, S., Bos, R., Bras, H., Jean-Xavier, C., Brocard, C., . . . Delpire, E. (2010). Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nature medicine, 16(3), 302.

Bouyer, L., & Rossignol, S. (2001). Spinal Cord Plasticity Associated with Locomotor Compensation to Peripheral Nerve Lesions in the Cat. In M. M. Patterson & J. W. Grau (Eds.), Spinal Cord Plasticity: Alterations in Reflex Function (pp. 207-224). Boston, MA: Springer US.

Bouyer, L. J. G., & Rossignol, S. (1998). The Contribution of Cutaneous Inputs to Locomotion in the Intact and the Spinal Cata. Annals of the New York Academy of Sciences, 860(1), 508-512.

Bouyer, L. J. G., Whelan, P. J., Pearson, K. G., & Rossignol, S. (2001). Adaptive Locomotor Plasticity in Chronic Spinal Cats after Ankle Extensors Neurectomy. The Journal of

Neuroscience, 21(10), 3531-3541.

Boyce, V. S., Tumolo, M., Fischer, I., Murray, M., & Lemay, M. A. (2007). Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol,

98(4), 1988-1996.

Brownstone, R. M., & Bui, T. V. (2010). Spinal interneurons providing input to the final common path during locomotion. In Progress in Brain Research (Vol. 187, pp. 81-95): Elsevier.

Brownstone, R. M., & Wilson, J. M. (2008). Strategies for delineating spinal locomotor rhythm- generating networks and the possible role of Hb9 interneurones in rhythmogenesis.

Bui, T. V., Akay, T., Loubani, O., Hnasko, T. S., Jessell, T. M., & Brownstone, R. M. (2013). Circuits for grasping: spinal dI3 interneurons mediate cutaneous control of motor behavior. Neuron, 78(1), 191-204.

Bui, T. V., Stifani, N., Panek, I., & Farah, C. (2015). Genetically identified spinal interneurons integrating tactile afferents for motor control. J Neurophysiol, 114(6), 3050-3063. Cabaj, A., Stecina, K., & Jankowska, E. (2006). Same spinal interneurons mediate reflex actions

of group Ib and group II afferents and crossed reticulospinal actions. Journal of

Neurophysiology, 95(6), 3911-3922.

Caccia, S., Muglia, M., Mancinelli, A., & Garattini, S. (1983). Disposition and metabolism of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine in the rat. Xenobiotica, 13(3), 147-153.

Cai, L. L., Fong, A. J., Otoshi, C. K., Liang, Y., Burdick, J. W., Roy, R. R., & Edgerton, V. R. (2006). Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. Journal of Neuroscience, 26(41), 10564- 10568.

Caldeira, V., Dougherty, K. J., Borgius, L., & Kiehn, O. (2017). Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci Rep, 7, 41369. Calvey, T. N., & Williams, N. E. (2008). Drug Action. In Principles and Practice of

Pharmacology for Anaesthetists (pp. 43-67): Blackwell Publishing Ltd.

Capaday, C., & Stein, R. (1986). Amplitude modulation of the soleus H-reflex in the human during walking and standing. The Journal of Neuroscience, 6(5), 1308-1313.

Carlson, S. L., Parrish, M. E., Springer, J. E., Doty, K., & Dossett, L. (1998). Acute Inflammatory Response in Spinal Cord Following Impact Injury. Experimental

Neurology, 151(1), 77-88.

Carlsson, A., Falck, B., Fuxe, K., & Hillarp, N. Å. (1964). Cellular localization of monoamines in the spinal cord. Acta Physiologica Scandinavica, 60(1‐2), 112-119.

Carlsson, A., Lindqvist, M., Magnusson, T., & Atack, C. (1973). Effect of acute transection on the synthesis and turnover of 5-HT in the rat spinal cord. Naunyn-Schmiedeberg's

archives of pharmacology, 277(1), 1-12.

Carlton, S. M., Du, J., Tan, H. Y., Nesic, O., Hargett, G. L., Bopp, A. C., . . . Hulsebosch, C. E. (2009). Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. PAIN, 147(1-3), 265-276.

Carrier, L., Brustein, E., & Rossignol, S. (1997). Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity.

Caudle, K. L., Brown, E. H., Shum-Siu, A., Burke, D. A., Magnuson, T. S. G., Voor, M. J., & Magnuson, D. S. K. (2011). Hindlimb Immobilization in a Wheelchair Alters Functional Recovery Following Contusive Spinal Cord Injury in the Adult Rat. Neurorehabilitation

and Neural Repair, 25(8), 729-739.

Cavanaugh, D. J., Chesler, A. T., Jackson, A. C., Sigal, Y. M., Yamanaka, H., Grant, R., . . . Julius, D. (2011). Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. Journal of Neuroscience, 31(13), 5067-5077.

Cazalets, J., Borde, M., & Clarac, F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. The Journal of Neuroscience, 15(7), 4943-4951.

Cazalets, J., Sqalli‐Houssaini, Y., & Clarac, F. (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. The

Journal of Physiology, 455(1), 187-204.

Ceccato, J.-C., De Sèze, M., Azevedo, C., & Cazalets, J.-R. (2009). Comparison of trunk activity during gait initiation and walking in humans. PLoS ONE, 4(12), e8193.

Cha, J., Heng, C., Reinkensmeyer, D. J., Roy, R. R., Edgerton, V. R., & De Leon, R. D. (2007). Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma, 24(6), 1000-1012.

Chacur, M., Lambertz, D., Hoheisel, U., & Mense, S. (2009). Role of spinal microglia in myositis-induced central sensitisation: An immunohistochemical and behavioural study in rats. European Journal of Pain, 13(9), 915-923.

Chan, J. Y., Fung, S. J., Chan, S. H., & Barnes, C. D. (1986). Facilitation of lumbar monosynaptic reflexes by locus coeruleus in the rat. Brain Research, 369(1-2), 103-109. Chau, C., Barbeau, H., & Rossignol, S. (1998a). Early Locomotor Training With Clonidine in

Spinal Cats. Journal of Neurophysiology, 79(1), 392-409.

Chau, C., Barbeau, H., & Rossignol, S. (1998b). Effects of Intrathecal α1- and α2-

Noradrenergic Agonists and Norepinephrine on Locomotion in Chronic Spinal Cats

(Vol. 79).

Chen, B., Li, Y., Yu, B., Zhang, Z., Brommer, B., Williams, P. R., . . . Zhu, J. (2018). Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations.

Cell, 174(3), 521-535. e513.

Chopek, J. W., MacDonell, C. W., Shepard, P. C., Gardiner, K. R., & Gardiner, P. F. (2018). Altered transcription of glutamatergic and glycinergic receptors in spinal cord dorsal horn following spinal cord transection is minimally affected by passive exercise of the

Chopek, J. W., Sheppard, P. C., Gardiner, K., & Gardiner, P. F. (2015). Serotonin receptor and KCC2 gene expression in lumbar flexor and extensor motoneurons posttransection with and without passive cycling. Journal of Neurophysiology, 113(5), 1369-1376.

Cohen, A. H. (1987). Intersegmental coordinating system of the lamprey central pattern generator for locomotion. Journal of Comparative Physiology A, 160(2), 181-193. Conway, B., Hultborn, H., & Kiehn, O. (1987). Proprioceptive input resets central locomotor

rhythm in the spinal cat. Experimental Brain Research, 68(3), 643-656.

Côté, M.-P., Azzam, G. A., Lemay, M. A., Zhukareva, V., & Houlé, J. D. (2011). Activity- Dependent Increase in Neurotrophic Factors Is Associated with an Enhanced Modulation of Spinal Reflexes after Spinal Cord Injury. Journal of Neurotrauma, 28(2), 299-309.

Côté, M.-P., Gandhi, S., Zambrotta, M., & Houlé, J. D. (2014). Exercise Modulates Chloride Homeostasis after Spinal Cord Injury. The Journal of Neuroscience, 34(27), 8976-8987. Cotel, F., Exley, R., Cragg, S. J., & Perrier, J.-F. (2013). Serotonin spillover onto the axon initial

segment of motoneurons induces central fatigue by inhibiting action potential initiation.

Proceedings of the National Academy of Sciences, 110(12), 4774-4779.

Coull, J. A. M., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., . . . De Koninck, Y. (2005). BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 438.

Coulon, P., Bras, H., & Vinay, L. (2011). Characterization of last‐order premotor interneurons by transneuronal tracing with rabies virus in the neonatal mouse spinal cord. Journal of

Comparative Neurology, 519(17), 3470-3487.

Courtine, G., Gerasimenko, Y., van den Brand, R., Yew, A., Musienko, P., Zhong, H., . . . Edgerton, V. R. (2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci, 12(10), 1333-1342.

Cowley, K., & Schmidt, B. (1997). Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord. Journal of Neurophysiology, 77(1), 247-259. Cowley, K. C., MacNeil, B. J., Chopek, J. W., Sutherland, S., & Schmidt, B. J. (2015).

Neurochemical excitation of thoracic propriospinal neurons improves hindlimb stepping in adult rats with spinal cord lesions. Experimental Neurology, 264, 174-187.

Cowley, K. C., & Schmidt, B. J. (1995). Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol, 74(3), 1109-1117.

Crenna, P., & Frigo, C. (1984). Evidence of phase-dependent nociceptive reflexes during locomotion in man. Experimental Neurology, 85(2), 336-345.

Crone, C., Hultborn, H., Jespersen, B., & Nielsen, J. (1987). Reciprocal Ia inhibition between ankle flexors and extensors in man. The Journal of Physiology, 389(1), 163-185. Crone, C., & Nielsen, J. (1989). Methodological implications of the post activation depression

of the soleus H-reflex in man. Experimental Brain Research, 78(1), 28-32.

Crone, S. A., Quinlan, K. A., Zagoraiou, L., Droho, S., Restrepo, C. E., Lundfald, L., . . . Kiehn, O. (2008). Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron, 60(1), 70-83.

Crone, S. A., Zhong, G., Harris-Warrick, R., & Sharma, K. (2009). In mice lacking V2a interneurons, gait depends on speed of locomotion. Journal of Neuroscience, 29(21), 7098-7109.

Crowley, T., Cryan, J. F., Downer, E. J., & O’Leary, O. F. (2016). Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain, Behavior, and Immunity, 54, 260-277.

Crown, E. D., Ferguson, A. R., Joynes, R. L., & Grau, J. W. (2002a). Instrumental learning within the spinal cord: II. Evidence for central mediation. Physiology & Behavior, 77(2– 3), 259-267.

Crown, E. D., Ferguson, A. R., Joynes, R. L., & Grau, J. W. (2002b). Instrumental learning within the spinal cord: IV. Induction and retention of the behavioral deficit observed after noncontingent shock. Behavioral neuroscience, 116(6), 1032-1051.

Crown, E. D., & Grau, J. W. (2001). Preserving and Restoring Behavioral Potential Within the Spinal Cord Using an Instrumental Training Paradigm. Journal of Neurophysiology,

86(2), 845-855.

D'Amico, J. M., Butler, A. A., Héroux, M. E., Cotel, F., Perrier, J.-F. M., Butler, J. E., . . . Taylor, J. L. (2017). Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone. The Journal of Physiology, 595(5), 1763-1773. D'Amico, J. M., Condliffe, E. G., Martins, K. J. B., Bennett, D. J., & Gorassini, M. A. (2014). Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Frontiers in Integrative Neuroscience, 8.

De Leon, R., Hodgson, J., Roy, R., & Edgerton, V. (1999). Retention of Hindlimb Stepping Ability in Adult Spinal Cats After the Cessation of Step Training. Journal of

Neurophysiology, 81(1), 85-94.

de Leon, R. D., Hodgson, J. A., Roy, R. R., & Edgerton, V. R. (1998). Locomotor Capacity Attributable to Step Training Versus Spontaneous Recovery After Spinalization in Adult Cats. Journal of Neurophysiology, 79(3), 1329-1340.

de Leon, R. D., Reinkensmeyer, D. J., Timoszyk, W. K., London, N. J., Roy, R. R., & Reggie Edgerton, V. (2002). Chapter 11 Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord. In L. McKerracher, G. Doucet, & S. Rossignol (Eds.),

Progress in Brain Research, 137: 141-149.

de Sèze, M., Falgairolle, M., Viel, S., Assaiante, C., & Cazalets, J.-R. (2008). Sequential activation of axial muscles during different forms of rhythmic behavior in man.

Experimental Brain Research, 185(2), 237-247.

Descarries L., Mechawar N. (2000). Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Progress in Brain

Research, 125:27–47.

Detloff, M. R., Fisher, L. C., McGaughy, V., Longbrake, E. E., Popovich, P. G., & Basso, D. M. (2008). Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats.

Experimental Neurology, 212(2), 337-347.

Detloff, M. R., Smith, E. J., Quiros Molina, D., Ganzer, P. D., & Houlé, J. D. (2014). Acute exercise prevents the development of neuropathic pain and the sprouting of non- peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury.

Experimental Neurology, 255, 38-48.

Deyn, P. P., & Macdonald, R. L. (1988). Effects of non-sedative anxiolytic drugs on responses to GABA and on diazepam-induced enhancement of these responses on mouse neurones in cell culture. British Journal of Pharmacology, 95(1), 109-120.

Djouhri, L., Al Otaibi, M., Kahlat, K., Smith, T., Sathish, J., & Weng, X. (2015). Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization- activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience, 301, 121-133. Djouhri, L., Dawbarn, D., Robertson, A., Newton, R., & Lawson, S. N. (2001). Time Course