• Aucun résultat trouvé

CHAPITRE I : ETAT DE L’ART SUR LE SOUDAGE FSW

I. 2. 6 Fatigue des assemblages soudés

I. 3. Conclusion du chapitre

Ce chapitre a permis de passer en revue l’essentiel des travaux de recherche réalisés autour du procédé de soudage par FSW notamment pour mettre en lumière les études liées à la caractérisation du comportement mécanique, sous chargement de traction monotone quasi-statique et de fatigue, des soudures FSW.

Le procédé de soudage par FSW introduit de fortes modifications de microstructure le long des joints et introduit un état de contraintes résiduelles très complexe. Cela conduit, en général, à la dégradation des propriétés mécaniques des soudures FSW et dépend des paramètres du procédé. Le profil de microdureté le long des joints illustre les forts gradients de microstructure qui s’explique par la modification des tailles de grains (dans le noyau et la ZATM) et par l’état de précipitation : modification de la distribution des phases durcissantes, modification de leur taille, leur dissolution ainsi que l’apparition de nouvelle. Ces hétérogénéités de microstructure induisent des hétérogénéités de comportement mécanique

dans chacune des zones constituant les joints soudés. Cette problématique n’a pas été abordée largement dans la littérature. Si des travaux ont été réalisés pour la caractérisation du comportement mécanique en traction monotone quasi-statique, aucune étude n’a permis de caractériser le comportement mécanique cyclique des soudures FSW.

La tenue en fatigue des joints soudés par FSW a été très peu abordée dans la littérature, aussi, les mécanismes d’endommagement et les origines de l’amorçage des fissures de fatigue restent mal compris. Nous espérons contribuer, par notre étude, à répondre à ces questionnements et à mieux comprendre la tenue en fatigue des joints soudés par FSW et leurs propriétés mécaniques cycliques.

Références Bibliographiques

[1] M. Ericsson and R. Sandström. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. International Journal of Fatigue, 25(12) : 1379_1387, 2003.

[ 2 ] Eric FEULVARCH, Modélisation numérique du soudage par friction malaxage. Thèse de doctorat. Décembre 2005.

[3] S. Zimmer, Contribution à l'industrialisation du soudage par friction malaxage. Arts et métiers. Paris Tech. décembre 2009.

[4] Kurt, A., Gulenc, B., Uygur, I., Ates, H., 2006. The effect of rotation speed on mechanical properties of commercially pure Aluminium joined by friction stir welding.In: Materials and Technology Conference, 15–19 October., Fundamentals and Characterisation vol. 1, Ohio, USA, pp. 565–570.

[ 5 ] Frédéric GEMME, Modélisation numérique des phénomènes physiques du soudage par friction malaxage et comportement en fatigue de joints soudés en aluminium 7075-T6. Université Montréal- Canada. Mars 2011.

[ 6 ] Roland CAZES, soudage par friction-malaxage, Techniques de l’Ingénieur, traité Génie mécanique BM 7 746.

[ 7 ] TWI, The Welding Institute http://www.twi.co.uk/j32k/index.xtp Institut de soudage 1991.

[ 8 ] R.S. Mishra, Z. Y. Ma, Friction stir welding and processing. Material science and Engineering R 50 (2005) 1-78.

[9] Friction Stir welding and processing Material Science and Engineering R 50 (2005) I-78

[10] D.A. Burford ,B.M. Tweedy,C.A. Widener, 6th International Friction Stir Welding Symposium FSW Aerospace III (Session 11B) October 12th, 2006

[11] CEWAC, Centre d’étude Wallon de l’Assemblage et du Contrôle des matériaux http://cewac.be

[12] C. B. Fuller, 2007, Friction Stir Welding and Processing - Chapter 2 Friction

[13] S. Zimmer, W. Chapeau, B. Da Costa, X. Stassart, N. Ben Slima Ayadi, L. Langlois, J.C. Goussain, B. de Meester, L. D’Alvise, Manuel Pédagogique, Le soudage par friction malaxage, friction stir welding, ISBN 978-2-900781-67-8

[14] Self-optimization in tool wear for friction-stir welding of Al 6061_20% Al2O3 MMC R.A. Prado, L.E. Murr *, K.F. Soto, J.C. McClure.

Department of Metallurgical and Materials Engineering, The University of Texas , El Paso, TX 79968-0520, USA, 2002.

[15] Friction stir welding of ferritic steel TW. Nelson and J Q Su Brigham Youngg University.

[16] Fukumoto M, Yasui T, Shinoda Y, Tshubaki M & Shinoda T (2004). Butt welding between dissimilar me tals by friction stirring. 5th International FSW symposium, Metz, France. 14-16. TWI (UK). Retrieved: CD-ROM.

[17] DRH Jones et MF ASHBY, Matériaux. Dunod 1991

[18] Sutton MA, Yang B, Reynolds AP, Taylor R. Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng A 2002;323(1–2):160–6.

[19] Reynolds AP, Hood E, Tang W. Texture in friction stir welds of Timetal 21S. Scripta Mater 2005;52(6):491–4.

[20] Dubourg, L., Gagnon, F.-O., Nadeau, F., St-Georges, L., & Jahazi, M. (2006). Process window optimization for FSW of thin and thick sheet Al alloys using statistical methods. 6th International Friction Stir Welding Symposium, St-Sauveur, CanadaTWI.

[21] Dong, P., Lu, F., Hong, J. K., & Cao, Z. (2001). Coupled Thermomechanical Analysis of Friction Stir Welding Using Simplified Models. Science and Technology of Welding and Joining, 6 (5), 281-287.

[22] Kim, Y. G., Fujii, H., Tsumura, T., Komazaki, T., & Nakata, K. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering A, 415, 250-254.

[23] Y. Li, L.E. Murr et J.C. McClure. Materials Science and Engineering, 1999, vol.A271, p213

[24] A. P. Reynolds. « Friction StirWelding of Aluminium Alloys ». Handbook of aluminium : Alloy production and Materials Manufacturing, page 579, 2003.

[25] Fujii H, Cui L, Tsuji N, Maeda M, Nakata K, Nogi K. Friction stir welding of carbon steels. Mater Sci Eng A 2006;429(1–2):50–7.

[26] K. Colligan. Proc. 1st International on Friction Stir Welding, Thousand Oaks, California, USA, June 1999.

[27] H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, B.Y. Zhang, Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation, Materials Science and Engineering (A 488), pp 64-71, 2008

[28] Yuh, J. Chao, X. and Qi W. Tang. Heat Transfer in Friction Stir Welding Experimental and Numerical Studies. Department of Mechanical Engineering, University of South Carolina 300 S. Main, Columbia, SC 29208

[29] T.Dickerson, Q. Shi, and H.R. Shercli. Heatow into Friction Stir Welding tools. In 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 2003.

[30] A. Simar, 2006, A multiscale multiphysics investigation of aluminum friction stir welds from thermal modelling to mechanical properties through precipitation evolution and hardening Thèse de doctorat de l’Université Catholique de Louvain.

[31] Self-optimization in tool wear for friction-stir welding of Al 6061_20% Al2O3 MMC R.A. Prado, L.E. Murr *, K.F. Soto, J.C. McClure. Department of Metallurgical and Materials Engineering, The University of Texas , El Paso, TX 79968-0520, USA, 2002.

[32] A. GERLICH, P. SU, T. H. NORTH, “Magnesium Technol-ogy 2005”, edited by N. R. Neelameggham, H. I. Kaplan and B. R. Powell (TMS), February 2005.

[33] Khandkar, M. Z. H., & Khan, J. A. (2001). Thermal modelling of overlap friction stir welding for Al-alloys. Journal of Material Processing & Manufacturing Science, 7(2), 215-233.

[34] Frigaard. Grong et O.T. Midling. Metallurgical and Materials Transactions A, 2001, vol.32A, p1189.

[35] S. Zimmer, W. Chapeau, B. Da Costa, X. Stassart, N. Ben Slima Ayadi, L. Langlois, J.C. Goussain, B. de Meester, L. D’Alvise, Manuel Pédagogique, Le soudage par friction malaxage, friction stir welding, ISBN 978-2-900781-67-8.

[36] L.E., Karlsson, L., Larsson, H., Karlsson, B., Fazzini, M. and Karlsson, J., Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082, Science and Technology of Welding & Joining, Vol. 5 (5), pp. 285-296, 2000.

[37] Rhodes, C.G., Mahoney, M.W., Bingel, W.H., Spurling, R.A., Bampton, C.C., 1997.Effects of friction stir welding on microstructure of 7075 aluminum. Scr. Mater.36, 69– 75.

[38] M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, et al. Metallurgical and Materials Transactions A, 1998, vol.29A, p1955

[39] Bailon, J.-P., & Dorlot, J.-M. (2005). Des Matériaux. Montreal, Canada: Presses Internationales Polytechnique.

[40] Y.S. Sato et H. Kokawa. Metallurgical and Materials Transactions A, 2001, vol.32A, p3023.

[41] L.E. Murr, G. Liu et J.C. McClure. Journal of Materials Science, 1998, vol.33, p1243 [42] G. Biallas, R. Braun, C. Dalle-donne et al. Proc. 1st International on Friction Stir Welding, Thousand Oaks California USA, June 1999

[43] A. von Strombeck, J.F. dos Santos, F. Torster, et al. Proc. 1st International on Friction Stir Welding, Thousand Oaks, California, USA, June 1999.

[44] A. Leonard. Proc. 2nd International on Friction Stir Welding, Gothenburg, Sweden, 2000

[45] H. Perlitz et A. Westgren. Arkiv Kemi Mineralogi och Geologi B, 1943, vol.16, p13 [46] K.V. Jata, K.K. Sankaran et J.J. Ruschau. Metallurgical and Materials Transactions A,

2000, vol.31A, p2181

[47] M. James et M. Mahoney. Proc. 1st International on Friction Stir Welding, Thousand Oaks, California, USA, June 1999

[48] James, Bradley et al., 2005

[49] Pierron, F., Green, B.,Wisnom, M., and Hallett, S. (2007). Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Part II : Experimental results. Composites Part A : Applied Science and Manufacturing, A38 :2321–2332.

[50] Pouget, G. and Reynolds, A. (2007). Residual stress and microstructure effects on fatigue crack growth in AA 2050 friction stir welds. International Journal of Fatigue, A 30 :463–472. [51] Schneider, A., J., Nunes, Chen, A. C., S., P., and G., S. (2005). Tem study of the fsw nugget in

AA2195-T81. Journal of Materials Science, A 40 :4341–4345.

[52] Schreier, H. and Sutton, M. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, A 42 :303–310.

[53] Shahzad, M., Chaussumier, M., Chieragatti, R., Mabru, C., and Rezai-Aria, F. (2010). Influence of anodizing process on fatigue life of machined aluminium alloy. Procedia Engineering, 2 :1015–1024.

[54] Shukla, A. and Baeslack, W. (2007). Study of microstructural evolution in friction-stir welded thinsheet Al-Cu-Li alloy using transmission-electron microscopy. Scripta Materialia, A 56 :513–516.

[55] William, D., Lockwood, Tomaz, B., and Reynolds, A. (2001). Mechanical response of friction stir welded AA2024 : experiment and modeling. Materials Science and Engineering, A 323 :348–353.

[56] Genevois, C., Deschamps, A., and Vacher, P. (2005b). Comparative study on local and global mechanical properties of 2024 T351, 2024 T6 and 5251 O friction stir welds. Materials Science and Engineering, A 415 :162–170.

[57] D. Bolser, R. Talwar, and R. Lederich (2004). Mechanical properties of friction stir welded 7050-T7451. Technical report, The Boeing Company.

[58] V. Richter-Trummer, S. M. O. Tavares, P. M. G. P. Moreira, P. M. S. T. de Castro Faculdade de Engenharia da Universidade do Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal,

[59] Thomas LE JOLU. Étude de l’influence des défauts de soudage sur le comportement plastique et la durée de vie en fatigue de soudures par friction-malaxage d’un alliage Al-Cu-Li. Thèse 2011, MINES ParisTech Centre des Matériaux - UMR CNRS 7633 B.P. 87 91003 Evry Cedex

[60] Srivatsan, T., Vasudevan, S., and Park, L. (2007). The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Materials Science and Engineering, A 466 :235–245.

[61] P. Cavaliere, A. De Santis, F. Panella, and A. Squillace. Effect of anisotropy on fatigue properties of 2198 Al-Li plates joined by friction stir welding. Engineering

Failure Analysis, 16(6) :1856_1865, 2009.

[62] L. Magnusson and L. Källman. Mechanical properties of friction stir welds in thin sheet of aluminium 2024, 6013 and 7475. In Proceedings of the Second International Symposium on Friction Stir Welding, Gothenburg, Sweden, 2000.

[63] G. Bussu and P. E. Irving. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-t351 aluminium joints.

[64] X. Wang, K. Wang, Y. Shen, and K. Hu. Comparison of fatigue property between friction stir and TIG welds. Journal of University of Science and Technology Beijing, 15(3) :280_284, 2008.

[65] T. L. Dickerson and J. Przydatek. Fatigue of friction stir welds in aluminium alloys that contain root _aws. International Journal of Fatigue, 25(12) :1399_1409, 2003.

[66] S. Di, X. Yang, D. Fang, and G. Luan. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Materials Chemistry and Physics, 104(2-3) :244_248, 2007.

[67] Y. Uematsu, K. Tokaji, H. Shibata, Y. Tozaki, and T. Ohmune. Fatigue behaviour of friction stir welds without neither welding _ash nor _aw in several aluminium alloys. International Journal of Fatigue, 31(10) :1443_1453, 2009.

[68] Compact tensile CT50

[69] C. Z. Zhou, X. Q. Yang, and G. H. Luan. Investigation of microstructures and fatigue properties of friction stir welded Al-Mg alloy. Materials Chemistry and Physics, 98(2-3) : 285_290, 2006.

[70] X. Wang, K. Wang, Y. Shen, and K. Hu. Comparison of fatigue property between friction stir and TIG welds. Journal of University of Science and Technology Beijing, 15(3) : 280_284, 2008.

[71] C. Z. Zhou, X. Q. Yang, and G. H. Luan. Fatigue properties of friction stir welds in Al 5083 alloy. Scripta Materialia, 53(10) :1187_1191, 2005.

[72] H. Hori, S. Makita, and H. Hino. Friction Stir Welding of rolling stock for subway. In Proceedings of the First International FSW Symposium, Thousand Oaks, USA, 1999.

[73] G. Bussu et P.E. Irving. Proc. 1st International on Friction Stir Welding, Thousand Oaks California USA, June 1999

CHAPITRE II

Documents relatifs