• Aucun résultat trouvé

En conclusion, l’identification des motifs rm1 et rm2 présents dans l’ARNr 18S a permis d’établir que leurs interactions avec les motifs m1 et m2 de la tige-boucle 3’ de snR30 sont essentielles à la synthèse de l’ARNr 18S et la viabilité cellulaire. Cette interaction

87

essentielle entre snR30 et le pré-ARNr est conservée au cours de l’évolution et pourrait former une structure ARN guide/ARN cible totalement nouvelle pour les snoARN à boîtes H/ACA laissant la possibilité que bien d’autres ARN H/ACA orphelins utilisent les mêmes règles d’appariements. D’autre part, même s’il semble impossible d’exclure la possibilité que les motifs m1 et m2 de snR30 présentent une activité chaperonne, il semble qu’elle n’est pas suffisante pour remplir le rôle de snR30 dans la maturation du pré-ARNr. Nous avons donc proposé que snR30, via les motifs essentiels présents dans la région distale de la tige-boucle 3’, pourrait cibler ou recruter des facteurs essentiels au pré-ARNr en cours de maturation. La coexistence de ces deux mécanismes, coopérant ou non entre eux, pourrait aussi expliquer le rôle de snR30 dans les étapes de clivages du pré-ARNr.

88

Références

Abou Elela S, Ares M, Jr. (1998) Depletion of yeast RNase III blocks correct U2 3' end formation and results in polyadenylated but functional U2 snRNA. Embo J 17: 3738- 3746

Acevedo R, Samaniego R, Moreno Diaz de la Espina S (2002) Coiled bodies in nuclei from plant cells evolving from dormancy to proliferation. Chromosoma 110: 559-569

Achsel T, Brahms H, Kastner B, Bachi A, Wilm M, Luhrmann R (1999) A doughnut- shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. Embo J 18: 5789-5802

Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18: 5399-5410

Altman S (1990) Nobel lecture. Enzymatic cleavage of RNA by RNA. Biosci Rep 10: 317-337

Amiri KA (1994) Fibrillarin-like proteins occur in the domain Archaea. J Bacteriol

176: 2124-2127

Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433: 77-83

Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12: 1-11

Angermayr M, Bandlow W (2002) RIO1, an extraordinary novel protein kinase. FEBS

Lett 524: 31-36

Angermayr M, Roidl A, Bandlow W (2002) Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression.

Mol Microbiol 44: 309-324

Aprikian P, Moorefield B, Reeder RH (2001) New model for the yeast RNA polymerase I transcription cycle. Mol Cell Biol 21: 4847-4855

Aravind L, Koonin EV (1999) Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 48: 291-302

89

Arcus VL, Backbro K, Roos A, Daniel EL, Baker EN (2004) Distant structural homology leads to the functional characterization of an archaeal PIN domain as an exonuclease. J Biol Chem 279: 16471-16478

Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA, Eshleman JR, Cohen AR, Chakravarti A, Hamosh A, Greider CW (2005) Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A 102: 15960-15964

Arsham AM, Neufeld TP (2006) Thinking globally and acting locally with TOR. Curr

Opin Cell Biol 18: 589-597

Atzorn V, Fragapane P, Kiss T (2004) U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol Cell Biol 24: 1769-1778

Bachellerie JP, Cavaille J, Huttenhofer A (2002) The expanding snoRNA world.

Biochimie 84: 775-790

Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R (2005) Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C- terminal repeat of RNA polymerase II. Cell 123: 265-276

Baker DL, Youssef OA, Chastkofsky MI, Dy DA, Terns RM, Terns MP (2005) RNA- guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev

19: 1238-1248

Balakin AG, Smith L, Fournier MJ (1996) The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell

86: 823-834

Bally M, Hughes J, Cesareni G (1988) SnR30: a new, essential small nuclear RNA from Saccharomyces cerevisiae. Nucleic Acids Res 16: 5291-5303

Barth S, Hury A, Liang XH, Michaeli S (2005) Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 280: 34558-34568

Bassler J, Grandi P, Gadal O, Lessmann T, Petfalski E, Tollervey D, Lechner J, Hurt E (2001) Identification of a 60S preribosomal particle that is closely linked to nuclear export.

Mol Cell 8: 517-529

Beckouet F, Labarre-Mariotte S, Albert B, Imazawa Y, Werner M, Gadal O, Nogi Y, Thuriaux P (2008) Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol Cell Biol 28: 1596-1605

Beltrame M, Tollervey D (1995) Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. Embo J 14: 4350-4356

90

Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O (2007) Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol

27: 8015-8026

Bergkessel M, Wilmes GM, Guthrie C (2009) SnapShot: Formation of mRNPs. Cell

136: 794, 794 e791

Biggiogera M, Fakan S, Kaufmann SH, Black A, Shaper JH, Busch H (1989) Simultaneous immunoelectron microscopic visualization of protein B23 and C23 distribution in the HeLa cell nucleolus. J Histochem Cytochem 37: 1371-1374

Billy E, Wegierski T, Nasr F, Filipowicz W (2000) Rcl1p, the yeast protein similar to the RNA 3'-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis. Embo J 19: 2115-2126

Birch JL, Tan BC, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, Russell J, Lee SC, Zomerdijk JC (2009) FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 28: 854-865

Bohnsack MT, Kos M, Tollervey D (2008) Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep 9: 1230- 1236

Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574-585

Borovjagin AV, Gerbi SA (1999) U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J Mol Biol 286: 1347-1363

Borovjagin AV, Gerbi SA (2000) The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing. J Mol Biol 300: 57-74

Borovjagin AV, Gerbi SA (2001) Xenopus U3 snoRNA GAC-Box A' and Box A sequences play distinct functional roles in rRNA processing. Mol Cell Biol 21: 6210-6221

Borovjagin AV, Gerbi SA (2004) Xenopus U3 snoRNA docks on pre-rRNA through a novel base-pairing interaction. Rna 10: 942-953

Borovjagin AV, Gerbi SA (2005) An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA. Nucleic Acids Res 33: 4995-5005

Bortolin ML, Bachellerie JP, Clouet-d'Orval B (2003) In vitro RNP assembly and methylation guide activity of an unusual box C/D RNA, cis-acting archaeal pre-tRNA(Trp).

Nucleic Acids Res 31: 6524-6535

Bortolin ML, Ganot P, Kiss T (1999) Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. Embo J 18: 457-469

91

Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonne R, Bertrand E (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16: 777-787

Bousquet-Antonelli C, Henry Y, G'Elugne J P, Caizergues-Ferrer M, Kiss T (1997) A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs.

Embo J 16: 4770-4776

Bousquet-Antonelli C, Vanrobays E, Gelugne JP, Caizergues-Ferrer M, Henry Y (2000) Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre- rRNA cleavage at site A2. Rna 6: 826-843

Brand RC, Klootwijk J, Van Steenbergen TJ, De Kok AJ, Planta RJ (1977) Secondary methylation of yeast ribosomal precursor RNA. Eur J Biochem 75: 311-318

Briggs MW, Burkard KT, Butler JS (1998) Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation. J Biol

Chem 273: 13255-13263

Cahill NM, Friend K, Speckmann W, Li ZH, Terns RM, Terns MP, Steitz JA (2002) Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP. Embo J 21: 3816-3828

Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642-655

Casafont I, Bengoechea R, Navascues J, Pena E, Berciano MT, Lafarga M (2007) The giant fibrillar center: a nucleolar structure enriched in upstream binding factor (UBF) that appears in transcriptionally more active sensory ganglia neurons. J Struct Biol 159: 451-461

Catala M, Tremblay M, Samson E, Conconi A, Abou Elela S (2008) Deletion of Rnt1p alters the proportion of open versus closed rRNA gene repeats in yeast. Mol Cell Biol 28: 619-629

Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci

U S A 97: 14311-14316

Cavaille J, Nicoloso M, Bachellerie JP (1996) Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383: 732-735

Chamberlain JR, Lee Y, Lane WS, Engelke DR (1998) Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 12: 1678-1690

Chanfreau G, Elela SA, Ares M, Jr., Guthrie C (1997) Alternative 3'-end processing of U5 snRNA by RNase III. Genes Dev 11: 2741-2751

92

Chari A, Golas MM, Klingenhager M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135: 497-509

Charpentier B, Muller S, Branlant C (2005) Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res 33: 3133-3144

Cheng X, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29: 3784-3795

Choe SY, Schultz MC, Reeder RH (1992) In vitro definition of the yeast RNA polymerase I promoter. Nucleic Acids Res 20: 279-285

Chu S, Archer RH, Zengel JM, Lindahl L (1994) The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A 91: 659-663

Cimino GD, Gamper HB, Isaacs ST, Hearst JE (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry.

Annu Rev Biochem 54: 1151-1193

Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP (2001) Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res

29: 4518-4529

Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113: 181-187

Colley A, Beggs JD, Tollervey D, Lafontaine DL (2000) Dhr1p, a putative DEAH-box RNA helicase, is associated with the box C+D snoRNP U3. Mol Cell Biol 20: 7238-7246

Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21: 564- 579

Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57: 753-761

Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136: 777-793

Cormack BP, Struhl K (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69: 685-696

Cote CA, Greer CL, Peculis BA (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. Rna 8: 786-797

Cote CA, Peculis BA (2001) Role of the ITS2-proximal stem and evidence for indirect recognition of processing sites in pre-rRNA processing in yeast. Nucleic Acids Res 29: 2106- 2116

93

Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863-1876

Danin-Kreiselman M, Lee CY, Chanfreau G (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 11: 1279-1289

Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T (2002) Cajal body- specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs. Embo J 21: 2746-2756

de la Cruz J, Kressler D, Tollervey D, Linder P (1998) Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 17: 1128-1140

Decatur WA, Fournier MJ (2003) RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem 278: 695-698

Dennis PP, Omer A (2005) Small non-coding RNAs in Archaea. Curr Opin Microbiol

8: 685-694

Dez C, Froment C, Noaillac-Depeyre J, Monsarrat B, Caizergues-Ferrer M, Henry Y (2004) Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol Cell

Biol 24: 6324-6337

Dominski Z, Yang XC, Marzluff WF (2005) The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 123: 37-48

Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417: 967-970

Duan J, Li L, Lu J, Wang W, Ye K (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34: 427-439

Dunbar DA, Baserga SJ (1998) The U14 snoRNA is required for 2'-O-methylation of the pre-18S rRNA in Xenopus oocytes. Rna 4: 195-204

Egecioglu DE, Henras AK, Chanfreau GF (2006) Contributions of Trf4p- and Trf5p- dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. Rna 12: 26-32

Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S (2007) Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318: 1777-1779

Egloff S, Van Herreweghe E, Kiss T (2006) Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding. Mol Cell

94

El Hage A, Koper M, Kufel J, Tollervey D (2008) Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast. Genes Dev 22: 1069-1081

Eppens NA, Rensen S, Granneman S, Raue HA, Venema J (1999) The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated.

Rna 5: 779-793

Faber AW, Van Dijk M, Raue HA, Vos JC (2002) Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3'-end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 8: 1095-1101

Fath S, Milkereit P, Peyroche G, Riva M, Carles C, Tschochner H (2001) Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. Proc

Natl Acad Sci U S A 98: 14334-14339

Fatica A, Cronshaw AD, Dlakic M, Tollervey D (2002) Ssf1p prevents premature processing of an early pre-60S ribosomal particle. Mol Cell 9: 341-351

Fatica A, Oeffinger M, Dlakic M, Tollervey D (2003) Nob1p is required for cleavage of the 3' end of 18S rRNA. Mol Cell Biol 23: 1798-1807

Fatica A, Tollervey D, Dlakic M (2004) PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA. RNA 10: 1698-1701

Fayet-Lebaron E, Atzorn V, Henry Y, Kiss T (2009) 18S rRNA processing requires base pairings of snR30 H/ACA snoRNA to eukaryote-specific 18S sequences. Embo J 28: 1260-1270

Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, Milkereit P (2005) Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell 20: 263-275

Ferreira-Cerca S, Poll G, Kuhn H, Neueder A, Jakob S, Tschochner H, Milkereit P (2007) Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol

Cell 28: 446-457

Filipowicz W, Kiss T (1993) Structure and function of nucleolar snRNPs. Mol Biol

Rep 18: 149-156

French SL, Osheim YN, Cioci F, Nomura M, Beyer AL (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23: 1558- 1568

Gadal O, Labarre S, Boschiero C, Thuriaux P (2002a) Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO J 21: 5498-5507

95

Gadal O, Mariotte-Labarre S, Chedin S, Quemeneur E, Carles C, Sentenac A, Thuriaux P (1997) A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine.

Mol Cell Biol 17: 1787-1795

Gadal O, Strauss D, Braspenning J, Hoepfner D, Petfalski E, Philippsen P, Tollervey D, Hurt E (2001a) A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits. EMBO J 20: 3695-3704

Gadal O, Strauss D, Kessl J, Trumpower B, Tollervey D, Hurt E (2001b) Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence- containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol

21: 3405-3415

Gadal O, Strauss D, Petfalski E, Gleizes PE, Gas N, Tollervey D, Hurt E (2002b) Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. J Cell Biol 157: 941-951

Galani K, Nissan TA, Petfalski E, Tollervey D, Hurt E (2004) Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. J Biol Chem 279: 55411-55418

Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4: 975-980 Gall JG, Tsvetkov A, Wu Z, Murphy C (1995) Is the sphere organelle/coiled body a universal nuclear component? Dev Genet 16: 25-35

Gallagher JE, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ (2004) RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 18: 2506-2517

Ganot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89: 799-809

Ganot P, Jady BE, Bortolin ML, Darzacq X, Kiss T (1999) Nucleolar factors direct the 2'-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol 19: 6906-6917

Gautier T, Berges T, Tollervey D, Hurt E (1997) Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell

Biol 17: 7088-7098

Geerlings TH, Faber AW, Bister MD, Vos JC, Raue HA (2003) Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S Pre- rRNA in Saccharomyces cerevisiae. J Biol Chem 278: 22537-22545

Geerlings TH, Vos JC, Raue HA (2000) The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases. RNA 6: 1698-1703

96

Gelperin D, Horton L, Beckman J, Hensold J, Lemmon SK (2001) Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. Rna 7: 1268-1283

Gerbi SA, Borovjagin AV, Ezrokhi M, Lange TS (2001) Ribosome biogenesis: role of small nucleolar RNA in maturation of eukaryotic rRNA. Cold Spring Harb Symp Quant Biol

66: 575-590

Gerbi SA, Borovjagin AV, Lange TS (2003) The nucleolus: a site of ribonucleoprotein maturation. Curr Opin Cell Biol 15: 318-325

Gerczei T, Correll CC (2004) Imp3p and Imp4p mediate formation of essential U3- precursor rRNA (pre-rRNA) duplexes, possibly to recruit the small subunit processome to the pre-rRNA. Proc Natl Acad Sci U S A 101: 15301-15306

Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. Embo J 17: 1476-1486

Girard C, Verheggen C, Neel H, Cammas A, Vagner S, Soret J, Bertrand E, Bordonne R (2008) Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing. J Biol Chem 283: 2060-2069

Girard JP, Lehtonen H, Caizergues-Ferrer M, Amalric F, Tollervey D, Lapeyre B (1992) GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. Embo J 11: 673-682

Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271: 1513-1518 Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. Rna 11: 533-557

Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10: 105-115

Granneman S, Gallagher JE, Vogelzangs J, Horstman W, van Venrooij WJ, Baserga SJ, Pruijn GJ (2003) The human Imp3 and Imp4 proteins form a ternary complex with hMpp10, which only interacts with the U3 snoRNA in 60-80S ribonucleoprotein complexes.

Nucleic Acids Res 31: 1877-1887

Granneman S, Nandineni MR, Baserga SJ (2005) The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol

25: 10352-10364

Gu AD, Zhou H, Yu CH, Qu LH (2005) A novel experimental approach for systematic identification of box H/ACA snoRNAs from eukaryotes. Nucleic Acids Res 33: e194

97

Hall DB, Wade JT, Struhl K (2006) An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 26: 3672-3679

Hamma T, Ferre-D'Amare AR (2006) Pseudouridine synthases. Chem Biol 13: 1125- 1135

Hamma T, Reichow SL, Varani G, Ferre-D'Amare AR (2005) The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nat Struct Mol Biol 12: 1101-1107

Hartmuth K, Vornlocher HP, Luhrmann R (2004) Tobramycin affinity tag purification of spliceosomes. Methods Mol Biol 257: 47-64

Hedges J, West M, Johnson AW (2005) Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. Embo J 24: 567-579

Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19: 32-38

Held WA, Ballou B, Mizushima S, Nomura M (1974) Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem 249: 3103-3111

Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne JP, Caizergues-Ferrer M (1998) Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. Embo J 17: 7078-7090

Henras AK, Bertrand E, Chanfreau G (2004a) A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor. RNA 10: 1572- 1585

Henras AK, Dez C, Henry Y (2004b) RNA structure and function in C/D and H/ACA s(no)RNPs. Curr Opin Struct Biol 14: 335-343

Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65: 2334-2359

Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S, Tollervey D (1994) The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO

Documents relatifs