• Aucun résultat trouvé

Conception du filtre passe bande RF non reconfigurable à 1.95GHz

Chapitre IV. Conception et réalisation d’un filtre RF passe bande reconfigurable à

IV.1. Définition de la topologie du filtre

IV.1.1. Conception du filtre passe bande RF non reconfigurable à 1.95GHz

Nous avons identifié la bande 1 en WCDMA comme la plus contraignante et la plus restrictive en

matière de filtrage. Aussi, dans un premier temps il nous est apparu nécessaire de développer un filtre

centré à la fréquence de 1.95GHz. Une fois les caractéristiques électriques de ce filtre identifiées et

dimensionnées, nous pourrons aborder la phase d’étude de reconfigurabilité pour les autres bandes des

standards WCDMA et LTE.

Dans le chapitre précédent nous avons identifié plusieurs technologies de filtrage, mais toutes ne

présentaient pas de bonnes performances à la fois en intégration, en pertes dans la bande, en réjection,

en coût et surtout en reconfigurabilité. Nous nous sommes alors tournés vers une solution de filtrage

LC, qui présente l’avantage d’un faible coût d’implémentation et d’une bonne réjection, si l’on

optimise la structure du filtre. Cependant, il faut travailler sur deux points importants que sont

l’encombrement et la reconfigurabilité en fréquence du filtre, sans modifier les caractéristiques de

largeur de bande, de rejection et de pertes d’insertion.

Dans cette partie nous analysons le choix d’une topologie de filtre garantissant un compromis entre

encombrement, largeur de bande et rejection. En ce qui concerne l’encombrement, on cherchera à

limiter le nombre d’inductances et de capacités ainsi que leurs valeurs. Cela aura cependant un impact

direct sur l’ordre du filtre et donc sur sa sélectivité.

Afin de choisir la topologie garantissant le meilleur compromis, nous avons simulé sous Agilent ADS

avec des composants idéaux. Ainsi on ne se focalise que sur le nombre et la valeur des composants,

puis on introduit les imperfections (Q).

La première phase de l’étude consiste à partir de fonction de synthèse de filtrage « classique », de fixer

les paramètres électriques du filtre et après synthèse de choisir le filtre réalisant la fonction avec la

topologie la plus simple à réaliser et la moins coûteuse en surface. Ainsi, nous privilégions la

topologie qui aura les valeurs de capacité les plus faibles ainsi que le plus faible nombre

d’inductances. En effet, comme nous voulons synthétiser la fonction d’inductance à l’aide

d’inductances actives ; en réduisant leur nombre on réduit la consommation et l’impact des effets non

linéaires sur le filtre.

Nous donnons l’exemple de trois topologies qui ont été synthétisées et simulées afin de répondre au

gabarit de filtrage que nous avions fixé (60 MHz de bande et 23dB de réjection à F

0

±390MHz). Pour

synthétiser les fonctions de filtrage, nous avons décidé de restreindre les plages de valeurs possibles

pour les composants à 50pF pour les capacités et 2nH pour les inductances. Cette plage de valeur

permet déjà de limiter les dimensions du circuit. Les deux premières fonctions de filtrage que nous

avons synthétisées était des filtres « Elliptic » ou de « Tchebychev ».

Fig. 82.Filtre « Elliptic » d’ordre 4 Fig. 83.Filtre « Elliptic » d’ordre 7

Les inductances utilisées lors de la synthèse étaient des inductances idéales dont les deux seuls

paramètres réglables étaient la valeur même de l’inductance ainsi que la valeur du facteur de qualité.

Les deux filtres elliptics ont d’abord été simulés avec des inductances idéales (Q infini) puis nous

avons progressivement diminuée la valeur du Q des inductances. Ceci est fait dans le but d’identifier

la valeur du Q minimum lors de la conception des inductances afin de garantir des pertes d’insertion

maximales de 0.5dB en milieu de bande (ici 1.95GHz). Par exemple sur le filtre « Elliptic » d’ordre 4

nous voyons l’influence du facteur de qualité sur le S21 en bande. Un Q de 1000 garantit des pertes

d’insertion de 0.2dB alors qu’un Q de 10 fait chuter les pertes d’insertion à plus de 15dB. Un Q de 850

permet d’atteindre les 0.5dB de pertes d’insertion et un Q de 100 amène à des performances

comparable aux SAW en termes de pertes d’insertion (1dB). Le filtre d’ordre 7 est moins sensible aux

variations de facteur de qualité ; un Q de 700 au lieu de 850 est nécessaire pour garantir les 0.5dB de

pertes mais en utilisant une structure plus complexe (doublement de la surface des capacités). Bien

que d’un point de vue filtrage les deux filtres respectent le masque identifié dans le chapitre III, à

savoir 23dB d’atténuation à 390MHz de la porteuse et au moins 60MHz de bande, ils présentent une

ondulation dans la bande pour l’ordre 4 et plusieurs résonnance en fréquences basses (1 et 1.4GHz)

pour le filtre d’ordre 7. De plus la valeur des capacités est souvent proche de la limite des 50pF ce qui

a un impact direct sur la surface occupée. Nous avons alors cherché une solution moins sensible au

facteur de qualité (réduction du nombre d’inductances) et avec des valeurs de composant plus faibles.

Fig. 84.Filtre « Biquadratique » d’ordre 6

Le filtre Biquadratique d’ordre 6, sur la figure 84, illustre bien l’amélioration des pertes d’insertion par

rapport aux structures « Eliptic » aux mêmes valeurs de facteur de qualité. Avec un facteur de qualité

de 500 on obtient les 0.5dB de perte ainsi que les 60MHz de largeur de bande (72MHz). De plus le

filtre ne présente pas de résonnance positive (remonté de S

21

) aux fréquences basses. Cependant on

identifie clairement un manque de réjection à 390MHz de la porteuse. D’après le gabarit il manque

3dB d’atténuation à 1.56GHz et 5dB à 2.34GHz. La topologie (voir figure 85) n’est composée que de

trois inductances de faible valeur (230pH à 1.3nH) et 4 capacités.

Nous avons identifié que le couple C

1

L

1

joue un rôle majeur dans la détermination de la fréquence

centrale du filtre et la raideur. Comme nous allons le voir sur la figure 86, la capacité C

1

permet

principalement d’avoir une influence sur la fréquence d’accord du filtre.

Fig. 86.Impact de C1 sur le comportement du filtre

En diminuant la capacité C

1

, on augmente la fréquence de résonnance du filtre mais on vient en même

temps augmenter la largeur de bande, et ainsi diminuer la raideur du filtre. De même, nous avons

identifié que lorsque l’on diminue L

1

on augmente la fréquence de résonnance mais on diminue la

largeur de bande et donc on augmente la raideur. A partir de ce constat, nous avons optimisé les

valeurs de L

1

et C

1

de façon à augmenter la raideur sans modifier la fréquence d’accord du filtre.

Fig. 87.Amélioration de la sélectivité du filtre par optimisation de L1 et C1

Pour cela, on diminue la valeur de l’inductance et on et augmente la valeur de C

1

pour compenser la

déviation vers les fréquences hautes tout en augmentant la raideur. Ainsi nous avons pu faire

correspondre le gabarit et la réponse du filtre. Toutefois la bande 3dB a été quelque peu réduite de 72 à

62MHz, comme illustré sur la figure 87.