• Aucun résultat trouvé

Complexit´e et performances pratiques

6.3 Application au calcul d’un point par composante connexe dans un ensemble semi-alg´ebri-

6.4.3 Complexit´e et performances pratiques

On peut maintenant donner la complexit´e des versions probabilistes de l’algorithme d´ecrit ci-dessus lorsque la routine d’´elimination alg´ebrique utilis´ee est l’algorithme de r´esolution g´eom´etrique. L’entr´ee de l’algorithme est un syst`eme d’´equations et d’in´egalit´es polynomiales

f1=· · ·=fs= 0, g1>0, . . . , gk>0

et on noteraLla longueur d’un programme d’´evaluation de la famille (f1, . . . , fs, g1, . . . , gk).

Si dest la dimension de la vari´et´e alg´ebriqueV ⊂Cn d´efinie par : f1=· · ·=fs= 0

on peut (grˆace au th´eor`eme 46) borner le nombre de vari´et´es alg´ebriquesV(o`uI ⊂ {1, . . . , k}) `a ´etudier parPmin(d,k)

`=0

¡k

`

¢.

Pour chacune vari´et´e ag´ebrique V, on doit :

– calculer les valeurs critiques g´en´eralis´ees de la projection surεrestreinte `aV, la complexit´e de cette

´etape est donn´ee par le th´eor`eme 42 ;

– choisir un rationnel compris entre 0 et la plus petite de ces valeurs, la complexit´e de cette ´etape n’influe pas sur la complexit´e globale de l’algorithme ;

– calculer au moins un point par composante de Ve,aI ∩Rn, la complexit´e de cette ´etape est donn´ee par le th´eor`eme 29.

– d´eterminer le signe desgj(pourj∈ {1, . . . , k}\I) en les points r´eels encod´es par les param`trisations rationnelles fournies par l’´etape pr´ec´edente, la complexit´e de cette ´etape n’influe pas sur la com-pexit´e globale de l’algorithme.

Cette discussion permet donc d’´enoncer le r´esultat ci-dessous.

Th´eor`eme 47. SoitS ⊂Rn un ensemble semi-alg´ebrique d´efini par f1=· · ·=fs= 0, g1>0, . . . , gk >0

o`u(f1, . . . , fs, g1, . . . , gk)sont des polynˆomes deQ[X1, . . . , Xn] de degr´e born´e parD. SoitLla longueur d’un programme d’´evaluation de(f1, . . . , fs, g1, . . . , gk).

Si la vari´et´e alg´ebrique d´efinie par f1 = · · · =fs = 0 est lisse et que l’id´eal hf1, . . . , fsi est radical et ´equi-dimensionnel de dimension d, l’algorithme ci-dessus calcule au moins un point par composante connexe deS en

O(n7(n−d)4dD4n) op´erations arithm´etiques dansQ.

Implantations et performances pratiques. De premi`eres implantations de cet algorithme utilisant les bases de Gr¨obner comme routine d’´elimination alg´ebrique ont ´et´e effectu´ees. Bien ´evidemment, l’usage des bases de Gr¨obner permet d’obtenir des versions d´eterministes de l’algorithme qu’on vient de d´ecrire.

Cet algorithme tirant profit de l’efficacit´e des algorithmes donn´es dans le chapitre pr´ec´edent sur les probl`emes de plus de 4 variables, cette premi`ere implantation a d’ores et d´ej`a permis de r´esoudre des applications inaccessibles `a l’algorithme de d´ecomposition cylindrique alg´ebrique. Ceci dit, il apparaˆıt que diverses strat´egies peuvent ˆetre employ´ees (dans l’ordre d’´etude des famillesI) et donnent des r´esultats pratiques sensiblement diff´erents : sur certains probl`emes certaines sont plutˆot lentes devant d’autres et le rapport d’inverse sur d’autres prob`emes. Il reste encore un certain nombre de choses `a comprendre et/ou un travail d’implantation `a effectuer avant d’arriver `a des r´esultats pratiques satisfaisants.

6.5 Notes bibliographiques et commentaires

Le calcul d’au moins un point par composante connexe d’un ensemble semi-alg´ebrique d´efini par un syst`eme d’´equations et d’in´egalit´es polynomiales par d´eformation pour ensuite appliquer les m´ethodes de points critiques apparaˆıt sous diff´erentes formes dans [65, 69, 70, 114, 17, 18, 19]. Ces algorithmes n’ont en g´en´eral aucune restriction sur l’entr´ee contrairement `a celui du paragraphe 6.4 de ce chapitre.

Ils souffrent n´eanmoins de constantes de complexit´e situ´ees en exposant particuli`erement ´elev´ees et sont inutilisables en pratique.

Les valeurs critiques g´en´eralis´ees sont initialement introduites dans [82, 74, 75]. Ces travaux four-nissent les premiers algorithmes permettant leur calcul via des id´eaux d’´elimination (l’un de ces algo-rithmes est ´evoqu´e dans le paragraphe 6.1). La taille des donn´ees interm´ediaires est particuli`erement

´elev´ee devant la taille de la sortie, si bien que ces algorithmes sont tr`es peu efficaces.

L’id´ee d’utiliser des propri´et´es de propret´e pour ramener le calcul de valeurs critiques asymptotiques d’une application polynomiale pour ramener leur calcul `a celui du lieu de non-propret´e d’une projection restreinte `a une courbe critique apparaˆıt initialement dans [129] et est d´evelopp´ee dans [131]. On y trouve les algorithmes et estimations de complexit´e donn´es dans le paragraphe 6.1. L’algorithme de calcul d’au moins un point par composante connexe d’un ensemble semi-alg´ebrique d´efini par une seule in´egalit´e ou une seule in´equation du paragraphe 6.3, ainsi que son application `a la d´etermination de l’existence de points r´eels r´eguliers dans un ensemble alg´ebrique d´efini par une seule ´equation apparaissent aussi dans [131].

Ce chapitre n’aborde pas le calcul d’au moins un point par composante connexe d’un ensemble semi-alg´ebrique d´efini par un syst`eme d’´equations et d’in´egalit´es (non strictes) polynomiales

f1=· · ·=fs= 0, g1>0, . . . , gk >0

Ce probl`eme se ram`ene en fait directement `a l’´etude des vari´et´es alg´ebriques r´eelles d´efinies par f1=· · ·=fs=gi1 =· · ·=gi` = 0

pour tout I = {i1, . . . , i`} ⊂ {1, . . . , s} (voir [21, Chapitre 13]). Une ´etude de ce probl`eme et son application `a un probl`eme de reconnaissance de forme figurent aussi dans [91].

Enfin, le calcul de valeurs critiques g´en´eralis´ees d’une application polynomiale restreinte `a une vari´et´e alg´ebrique lisse peut ˆetre utilis´e pour ´eviter les choix de projection g´en´erique (et/ou v´erifier que les choix de projection sont suffisamment g´en´eriques) dans les algorithmes du paragraphe 5.5 du chapitre pr´ec´edent. En effet, ces algorithmes sont fond´es sur le fait que les composantes connexes des vari´et´es choisies ont une image ferm´ee (pour la topologie euclidienne) par les projections choisies. Si ce n’est pas le cas, les extrˆemit´es de ces intervalles sont fatalement des valeurs critiques asymptotiques (puisque dans ce cas, on ne peut pas avoir fibration localement triviale autour ces extrˆemit´es). Un calcul de valeur critique asymptotique permet de r´ecup´erer ces valeurs et il suffit alors de consid´erer des fibres au-dessus de rationnels choisis entre chacune des valeurs critiques asymptotiques calcul´ees.

R´ ef´ erences

[1] ALDOR. http ://www.aldor.org/.

[2] Axiom. http ://wiki.axiom-developer.org/FrontPage.

[3] MAGMA. http ://magma.maths.usyd.edu.au/.

[4] Maple. http ://www.maplesoft.org/.

[5] Mathematica. http ://www.wolfram.com/.

[6] Reduce. http ://www.uni-koeln.de/REDUCE/.

[7] Singular. http ://www.singular.uni-kl.de/.

[8] M. E. Alonso, E. Becker, M.-F. Roy, and T. W¨ormann. Zeroes, multiplicities and idempotents for zerodimensional systems. InProceedings MEGA’94, volume 142 ofProgress in Mathematics, pages 1–15. Birkh¨auser, 1996.

[9] P. Aubry. Ensembles triangulaires de polynˆomes et r´esolution de syst`emes alg´ebriques. PhD thesis, Universit´e Paris 6, 1999.

[10] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.Journal of Symbolic Computation, Special Issue on Polynomial Elimination, 28 :105–124, 1999.

[11] P. Aubry, F. Rouillier, and M. Safey El Din. Real solving for positive dimensional systems. Journal of Symbolic Computation, 34(6) :543–560, 2002.

[12] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient real equation solving : the hypersurface case. Journal of Complexity, 13(1) :5–27, 1997.

[13] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient real elimination.

Mathematische Zeitschrift, 238(1) :115–144, 2001.

[14] B. Bank, M. Giusti, J. Heintz, and L.-M. Pardo. Generalized polar varieties and efficient real elimination procedure. Kybernetika, 40(5) :519–550, 2004.

[15] B. Bank, M. Giusti, J. Heintz, and L.-M. Pardo. Generalized polar varieties : Geometry and algorithms. to appear in Journal of complexity, 2005.

[16] M. Bardet, J.-C. Faug`ere, and B. Salvy. Asymptotic behaviour of the index of regularity of semi-regular quadratic polynomial systems. In Proceedings of the8th MEGA (Effective Methods in Al-gebraic Geometry), 2005.

[17] S. Basu. Algorithms in semi-algebraic geometry. PhD thesis, New-York University, 1996.

[18] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. Journal of ACM, 43(6) :1002–1045, 1996.

[19] S. Basu, R. Pollack, and M.-F. Roy. A new algorithm to find a point in every cell defined by a family of polynomials. InQuantifier elimination and cylindrical algebraic decomposition. Springer-Verlag, 1998.

[20] S. Basu, R. Pollack, and M-F Roy. Computing roadmaps of semi-algebraic sets on a variety.Journal of the AMS, 3(1) :55–82, 1999.

[21] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Springer-Verlag, 2003.

[22] W. Baur and V. Strassen. The complexity of partial derivatives. Theoret. Comput. Science, 22 :317–330, 1982.

[23] D. Bayer and M. Stillman. On the complexity of computing syzygies. Journal of Symbolic Com-putation, 6 :135–147, 1988.

[24] E. Becker, M. G. Marinari, T Mora, and C. Traverso. The shape of the Shape Lemma. InProceedings of ISSAC’94, pages 129–133. ACM Press, 1994.

[25] E. Becker and R. Neuhaus. Computation of real radicals for polynomial ideals. In Computational Algebraic Geometry, volume 109 ofProgress in Mathematics, pages 1–20, 1993.

[26] E. Becker and V. Weipsfenning. Grœbner bases : a computational approach to commutative algebra.

Graduate Texts in Mathematics : readings in Mathematics. Springer-Verlag, 1993.

[27] E. Becker and T. W¨ørmann. Radical computations of zero-dimensional ideals and real root coun-ting. Mathematics and Computers in Simulation, 1994.

[28] R. Benedetti and J.-J. Risler. Real algebraic and semi-algebraic sets. Hermann, 1990.

[29] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebite. Springer-Verlag, 1998.

[30] J.D. Boissonnat and M. Yvinnec. Algorithmic geometry. Cambridge University Press, 1998.

[31] A. Bostan, B. Salvy, and E. Schost. Fast algorithms for zero-dimensional polynomial systems using duality. Applicable Algebra in Engineering, Communication and Computing, 14(4) :239–272, 2003.

[32] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

[33] B. Buchberger. Gr¨obner bases : An algoritmic method in polynomial ideal theory. In Multidimen-sional System Theory, pages 374–383. Reidel, Dordrecht, 1985.

[34] J. Canny. The complexity of robot motion planning. MIT Press, 1987.

[35] J. Canny. Some algebraic and geometric problems in pspace. InProceedings STOC, pages 460–467, 1988.

[36] J. Canny. Computing roadmaps in general semi-algebraic sets. The Computer Journal, 1993.

[37] A.L. Chistov and D.Y. Grigoriev. Polynomial factoring of multivariate polynomials over a global field. Technical report, LOMI pre-print, Steklov Institute, 1982.

[38] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition.

Lecture notes in computer science, 33 :515–532, 1975.

[39] P. Conti and C. Traverso. Algorithms for the real radical. Unpublished manuscript.

[40] S. Corvez and F. Rouillier. Using computer algebra tools to classify serial manipulators. In F. Winkler, editor,Automated Deduction in Geometry, volume 2930 ofLecture Notes in Artificial Intelligence, pages 31–43. Springer, 2003.

[41] M. Coste. Introduction `a la g´eom´etrie semi-alg´ebrique. Polycopi´e, Institut de Recherche Math´e-matique de Rennes.

[42] D. Cox, J. Little, and D. O’Shea. Ideals, varieties and algorithms : an introduction to computational algebraic geometry and commutative algebra. Springer-Verlag, 1992.

[43] X. Dahan and E. Schost. Sharp estimates for triangular sets. In Proceedings of ISSAC’04. ACM Press, 2004.

[44] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method method for computing in algebraic number fields. InProceedings of EUROCAL 85, volume 204 ofLecture Notes of Computer Science, pages 289–290. Springer-Verlag, 1985.

[45] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parameterization of the intersec-tion of quadrics : I. The generic algorithm. Technical Report 5667, INRIA, September 2005.

[46] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parameterization of the inter-section of quadrics : II. A classification of pencils. Technical Report 5668, INRIA, September 2005.

[47] J. El Omri and P. Wenger. Changing posture for cuspidal robot manipulators. In Proceeding of the 1996 IEEE Int. Conf on Robotics and Automation, pages 3173–3178, 1996.

[48] H. Everett, D. Lazard, S. Lazard, and Safey El Din M. The Voronoi diagram of three lines in R3. Insubmitted to Symposium on Computational Geometry, 2007.

[49] J.-C. Faug`ere. Gb/FGb. available athttp ://fgbrs.lip6.fr.

[50] J.-C. Faug`ere. A new efficient algorithm for computing Gr¨obner bases (F4).-. Journal of Pure and Applied Algebra, 139(1–3) :61–88, 1999.

[51] J.-C. Faug`ere. A new efficient algorithm for computing Gr¨obner without reduction to zero (F5).

InProceedings of ISSAC 2002, pages 75 – 83. ACM Press, 2002.

[52] J.C. Faug`ere, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gr¨ob-ner bases by change of ordering. Journal of Symbolic Computation, 16(4) :329–344, 1993.

[53] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete.

3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.

3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.

[54] G. Gallo and B. Mishra. Efficient algorithms and bounds for wu-ritt characteristic sets. In Procee-dings MEGA’90. Birkha¨user, 1990.

[55] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using gr¨obner bases.

In Proceedings of AAECC, volume 356 of Lecture Notes in Computer Science, pages 247–257.

247-257, 1989.

[56] M. Giusti. Complexity of standard bases in projective dimension zero. InProceedings of EUROCAL 87, volume 378 ofLecture Notes in Computer Science, pages 333–335, 1989.

[57] M. Giusti, K. H¨agele, J. Heintz, J.-E Morais, J.-L. Monta˜na, and L.-M. Pardo. Lower bounds for Diophantine approximation. InProceedings of MEGA’96, number 117, 118 in Journal of Pure and Applied Algebra, pages 277–317, 1997.

[58] M. Giusti and J. Heintz. La d´etermination des points isol´es et de la dimension d’une vari´et´e alg´e-brique peut se faire en temps polynomial. InComputational Algebraic Geometry and Commutative Algebra, volume XXXIV of Symposia Matematica, pages 216–256. Cambridge University Press, 1993.

[59] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line programs in geometric elimination theory. Journal of Pure and Applied Algebra, 124 :101–146, 1998.

[60] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation systems can be solved fast ? InProceedings of AAECC-11, volume 948 ofLNCS, pages 205–231. Springer, 1995.

[61] M. Giusti, G. Lecerf, and B. Salvy. A Gr¨obner free alternative for polynomial system solving.

Journal of Complexity, 17(1) :154–211, 2001.

[62] L. Gonzalez-Vega. Applying quantifier elimination to the Birkhoff interpolation problem. Journal of Symbolic Computation, 1996.

[63] D. Grigoriev and D. De Klerk, E. Pasechnik. Finding optimum subject to few quadratic constraints in polynomial time. InProceedings of MEGA’2003, 2003.

[64] D. Grigoriev and D. Pasechnik. Polynomial time computing over quadratic maps i. sampling in real algebraic sets. Computational complexity, 14 :20–52, 2005.

[65] D. Grigoriev and N. Vorobjov. Solving systems of polynomials inequalities in subexponential time.

Journal of Symbolic Computation, 5 :37–64, 1988.

[66] W. Habicht. Eine Verallgemeinrung des Sturmschen Wurzelz¨ahlverfahrens.Comm. Math. Helvetici, 21 :99–116, 1948.

[67] A. Hashemi and D. Lazard. Complexity of zero-dimensional gr¨obner bases. Submitted to Journal of Symbolic Computation., 2006.

[68] J. Heintz, G. Jer´onimo, J. Sabia, J. San Martin, and P. Solerno. Intersection theory and deformation algorithm. the multi-homogeneous case. Manuscript, 2002.

[69] J. Heintz, M.-F. Roy, and P. Solern`o. On the complexity of semi-algebraic sets. In Proceedings IFIP’89 San Francisco, North-Holland, 1989.

[70] J. Heintz, M.-F. Roy, and P. Solern`o. On the theoretical and practical complexity of the existential theory of the reals. The Computer Journal, 36(5) :427–431, 1993.

[71] E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. In Symbolic and numerical scientific computation (Hagenberg, 2001), volume 2630 of Lecture Notes in Comput. Sci., pages 1–39. Springer, Berlin, 2003.

[72] E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. II. Differential systems. In Symbolic and numerical scientific computation (Hagenberg, 2001), volume 2630 of Lecture Notes in Comput. Sci., pages 40–87. Springer, Berlin, 2003.

[73] Z. Jelonek. Testing sets for properness of polynomial mappings.Mathematische Annalen, 315(1) :1–

35, 1999.

[74] Z. Jelonek and K. Kurdyka. On asymptotic critical values of a complex polynomial. J. Reine Angew. Math., 565 :1–11, 2003.

[75] Z. Jelonek and K. Kurdyka. Quantitative generalized Bertini-Sard theorem for smooth affine varieties. Discrete Comput. Geom., 34(4) :659–678, 2005.

[76] M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Kepler University, 1991.

[77] M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Kepler University, Linz, 1991.

[78] H. Kobayashi, S. Moritsugu, and R. W. Hogan. On solving systems of algebraic equations. In Pro-ceedings of ISSAC 99, volume 358 ofLecture Notes in Computer Science, pages 139–149. Springer-Verlag, 1988.

[79] V. Koltun and M. Sharir. Three dimensional euclidean voronoi diagrams of lines with a fixed SIAM J. Comput., 32(3) :616–642, 2003.

[80] L. Kronecker. Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichung.

Monatsberichte der K¨øniglich Preussischen Akademie der Wissenschaften, pages 535–600, 1881.

[81] L. Kronecker. Grundz¨uge einer arithmetischen Theorie der algebraischen Gr¨ossen. Journal f¨ur die Reine une Angewandte Mathematik, 92 :1–122, 1882.

[82] K. Kurdyka, P. Orro, and S. Simon. Semialgebraic sard theorem for generalized critical value.

Journal of differential geometry, 56(1) :67–92, 2000.

[83] Y. N. Lakshmann. A single exponential bound of the complexity of computing Gr¨obner bases of zero-dimensional ideals. In C. Traverso T. Mora, editor, Proc. Effective Methods in Algebraic Geometry, MEGA’90, volume 94 ofProgress in Mathematics, pages 227–234. Birkha¨user, 1991.

[84] Y.N. Lakshmann and D. Lazard. On the complexity of zero-dimensional algebraic systems. In Effective methods in algebraic geometry, volume 94 of Progress in Mathematics, pages 217–225.

Birkha¨user, 1991.

[85] J.-B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3) :796–817, 2001.

[86] D. Lazard. Gaussian elimination and resolution of systems of algebraic equations. volume 162 of Lecture Notes in Computer Science, pages 146–157. Springer-Verlag, 1983.

[87] D. Lazard. A new method for solving algebraic systems of positive dimension. Disc. Appl. Math., 33 :147–160, 1991.

[88] D. Lazard. Solving zero-dimensional algebraic systems. Journal of Symbolic Computation, 13 :117–

133, 1992.

[89] D. Lazard and F. Rouillier. Solving parametric polynomial systems. to appear in Journal of Symbolic Computation, 2007.

[90] D. Lazard and F. Rouillier. Solving parametric polynomial systems. Journal of Symbolic Compu-tation, to appear.

[91] C. Le Guernic, F. Rouillier, and M. Safey El Din. On the practical computation of one point in each connected component of a semi-algebraic set defined by a polynomial system of equations and non-strict inequalities. In L. Gonzalez-Vega and T. Recio, editors, Proceedings of EACA’04 Conference, 2004.

[92] G. Lecerf. Kronecker magma package for solving polynomial systems by means of geometric resolutions. available athttp ://www.math.uvsq.fr/ lecerf/software/.

[93] G. Lecerf. Une alternative aux m´ethodes de r´e´ecriture pour la r´esolution des syst`emes alg´ebriques.

PhD thesis, ´Ecole polytechnique, 2001.

[94] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. Journal of Complexity, 19(4) :564–596, 2003.

[95] F. Lemaire. Contribution `a l’algorithmique en alg`ebre diff´erentielle. PhD thesis, Universit´e des Sciences et Technologies de Lille, 2002.

[96] T. Lickteig and M-F Roy. Cauchy index computation. Calcolo, 33, 1996.

[97] H. Lombardi, M.-F. Roy, and M. Safey El Din. New structure theorems for subresultants. Journal of symbolic computation, 29(4) :663–690, 2000.

[98] R. Loos. Generalized polynomial remainder sequence. In R. Loos B. Buchberger, G.-E. Collins, editor,Computer Algebra, Symbolic and Algebraic Computation. Springer-Verlag, 1988.

[99] F.S. Macaulay. On some formulas in elimination. InProc. London Math. Soc., volume 3, 1902.

[100] F.S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge University Press, 1916.

[101] F.S. Macaulay. Some properties of enumeration in the theory of modular systems. InProc. London Math. Soc., volume 26, 1927.

[102] E. Mayr and A. Meyer. The complexity of the word problem for commutative semi-groups and polynomial ideals. Advance in Mathematics, 46(127) :305–329, 1982.

[103] S. Mc Callum. An improved projection operator for Cylindrical Algebraic Decomposition. PhD thesis, University of Wisconsin-Madison, 1984.

[104] M. Mezzarobba and M. Safey El Din. Computing roadmaps in smooth real algebraic sets. In J.-G. Dumas, editor, Proceedings of Transgressive Computing 2006, pages 327–338, 2006. isbn : 84-689-8381-0.

[105] M. Moreno Maza. Calculs de pgcd au-dessus des tours d’extensions simples et r´esolution des syst`emes d’´equations alg´ebriques. PhD thesis, Universit´e Paris 6, 1997.

[106] A. Mosig. Efficient algorithms for shape and pattern matching. PhD thesis, Bonn University, to appear, 2004.

[107] A. Mosig and M. Clausen. Approximately matching polygonal curves with respect to the fr´echet distance. submitted to Computational Geometry – Theory and Applications, 2004.

[108] B. Mourrain and P. Tr´ebuchet. Generalized normal forms and polynomial system solving. In M. Krauers, editor,International Symposium on Symbolic and Algebraic Computation, pages 253–

260. ACM Press, 2005.

[109] R. Narasimham. Introduction to the theory of analytic spaces. Springer-Verlag, 1966.

[110] L.M. Pardo. How lower and upper complexity bounds meet in elimination theory. InProceedings of AAECC, volume 948 ofLecture Notes in Computer Science, pages 33–69. Springer-Verlag, 1995.

[111] P. A. Parillo. Semi-definite relaxations for semi-algebraic problems., 2001.

[112] G. R´emond. ´Elimination multihomog`ene. InIntroduction to algebraic independence theory, volume 1752 ofLecture Notes in Math., pages 53–81. Springer, Berlin, 2001.

[113] G. R´emond. G´eom´etrie diophantienne multiprojective. InIntroduction to algebraic independence theory, volume 1752 ofLecture Notes in Math., pages 95–131. Springer, Berlin, 2001.

[114] J. Renegar. On the computational complexity and geometry of the first order theory of the reals.

Journal of Symbolic Computation, 13(3) :255–352, 1992.

[115] B. Reznick. Some concrete aspects of hilbert’s 17-th problem, 1999. Preprint available at http ://www.math.uiuc.edu/Reports/reznick/98-002.html.

[116] R. Rioboo. Quelques aspects du calcul exact avec les nombres r´eels. PhD thesis, University Pierre et Marie Curie (Paris 6), 1992.

[117] R. Rioboo. Towards faster real algebraic numbers. InProceedings of ISSAC 2002, pages 221–228.

ACM Press, 2002.

[118] J.F. Ritt. Differential equations from an algebraic standpoint. 1932.

[119] J.F. Ritt. Differential Algebra. Dover Publications, 1966.

[120] F. Rouillier. RS, RealSolving. available athttp ://fgbrs.lip6.fr.

[121] F. Rouillier. Algorithmes efficaces pour l’´etude des z´eros r´eels des syst`emes polynomiaux. PhD thesis, Universit´e de Rennes I, 1996.

[122] F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Representation.

AAECC Journal, 9(5) :433–461, 1999.

[123] F. Rouillier. On solving zero-dimensional systems with rational coefficients. submitted to Journal of Symbolic Computation, 2005.

[124] F. Rouillier, M.-F. Roy, and M. Safey El Din. Finding at least one point in each connected component of a real algebraic set defined by a single equation.Journal of Complexity, 16 :716–750, 2000.

[125] F. Rouillier, M. Safey El Din, and ´E. Schost. Solving the birkhoff interpolation problem via the critical point method : an experimental study. InProceedings of ADG’2000, 2000.

[126] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial real roots. Journal of Compu-tational and Applied Mathematics, 162(1) :33–50, 2003.

[126] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial real roots. Journal of Compu-tational and Applied Mathematics, 162(1) :33–50, 2003.