• Aucun résultat trouvé

En résumé, le sang périphérique provenant de donneurs sains a été la source optimale pour les

l’expansion des cellules NK. L’administration de G-CSF aux patients diminue la population et

la fonctionnalité des cellules NK CD56

bright

CD16

+

et favorise le développement d’une

population présentant une absence ou une difficulté d’acquisition du CD16, responsable de la

médiation du mécanisme de cytotoxicité dépendante des anticorps. Surmonter cette altération

de la capacité lymphoïde peut être important pour faciliter l’immunothérapie

post-111

transplantation. De plus, nous avons observé une surexpression de la plupart des cinq

récepteurs après 14 jours de culture, et l’expression de KIR2DL1, KIR2DL3, KIR2DL5 et

CD137 était significativement différente entre les trois origines des cellules NK.

112

Bibliographie

1. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and

therapy of acute myeloid leukemia. Blood 2013; 121:3563-3572.

2. Abea Y, Mutob M, Nieda M, et al. Clinical and immunological evaluation of

zoledronate-activated Vγ9γδ T-cell-based immunotherapy for patients with multiple myeloma.

Experimental Hematology 2009; 37:956-968.

3. Baba J, Watanabe S, Saida Y, Tanaka T, Miyabayashi T, Koshio J, et al. Depletion of

radio-resistant regulatory T cells enhances antitumor immunity duringrecovery from

lymphopenia. Blood 2012; 120:2417-2427.

4. Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al.

Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved

using IL-2 diphtheria toxin fusion protein. Blood 2014; 123:3855-3863.

5. Bacher U, Haferlach T, Fehse B, Schnittger S, Kroger N. Minimal residual disease

diagnostics and chimerism in the post-transplant period in acute myeloid leukemia.

Scientific World Journal 2011; 11:310-319.

6. Bacher U, Talano JA, Bishop MR. Monitoring and prevention of relapse after allogeneic

hematopoietic cell transplantation for myeloid malignancies. Biol Blood Marrow

Transplant. 2012; 18:S62-S73.

7. Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T. How and when should

we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow

Transplant. 2005; 35:107-119.

8. Bader P, Willasch A, Klingebiel T. Monitoring of post-transplant remission of childhood

malignancies: is there a standard. Bone Marrow Transplant. 2008; 42(Suppl. 2):S31-S34.

113

human and mouse NK cells and impairs NK-cell reactivity against huamn acute myeloid

leukemia cells. Blood 2010; 115:3058-3069.

10. Baggio L, Laureano ÁM, da Rocha Silla LM, Lee DA. Natural killer cell adoptive

immunotherapy: coming of age. Clin. Immunol. 2016; http://dx.doi.org/10.1016/

j.clim.2016.02.003.

11. Baier C, Fino A, Sanchez C, Farnault L, Rihet P, Kahn-Perles B, et al. Natural killer cells

modulation in hematological malignancies. Front. Immunol. 2013; 4:459.

12. Bar M, Sandmaier BM, Inamoto Y, et al. Donor lymphocyte infusion for relapsed

hematological malignancies after allogeneic hematopoietic cell transplantation:

prognostic relevance of the initial CD3+ T cell dose. Biol Blood Marrow Transplant.

2013; 19:949-957.

13. Baron F, Baker JE, Strob R, Gooley TA, Sandmaier BM, Mickael B, et al. Kinetics of

engraftment in patients with hematological malignancies given allogeneic hematopoietic

cell transplantation after non-myeloablative conditioning. Blood 2004; 104:2254-2262.

14. Baron F, Sandmaier BM. Chimerism and outcomes after allogeneic hematopoietic cell

transplantation following nonmyeloablative conditioning. Leukaemia 2006;

20:1690-1700.

15. Barrett AJ. Understanding and harnessing the graft-versus-leukaemia effect. Br J

Haematol. 2008; 142:877-888.

16. Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural

killer cells. Adv. Immunol. 2005; 86:209-239.

17. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute

leukaemias. French-American-British (FAB) cooperative group. Br J Haematol. 1976; 33:

451-458.

114

18. Berg M, Childs R. Ex-vivo expansion of NK cells: what is the priority-high yield or high

purity? Cytotherapy. 2010; 12:969-970.

19. Berg M, Lundqvist A, Betters D, Childs RW. In vitro expanded NK cells have increased

natural cytotoxity receptors, TRAIL and NKG2D expression, and superior tumor

cytotoxicity compared to short-term IL-2-activated NK cells [abstract]. Blood (ASH

Annual Meeting Abstracts). 2009; 114:463.

20. Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, et al. Clinical-grade ex

vivo-expanded human natural killer cells up-regulate activating receptors and death

receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy.

2009; 11:341-355.

21. Berrien-Elliott MM, Wagner JA, Fehniger TA. Human cytokine-induced memory-like

natural killer cells. J. Innate Immun. 2015; 7:563-571.

22. Beziat V, Duffy D, Quoc SN, et al. CD56

bright

CD16

+

NK cells: a functional intermediate

stage of NK cell differentiation. The journal of immunology. 2011; 186: 6753-6761.

23. Blom B, Spits H. Development of human lymphoid cells. Annu Rev Immunol 2006; 24:

287-320.

24. Boissel L, Tuncer HH, Betancur M, Wolfberg A, Klingemann H. Umbilical cord

mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol. Blood

Marrow Transplant. 2008; 14:1031-1038.

25. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that

originates from a primitive hematopoietic cell. Nat. Med. 1997; 3:730-737.

26. Bonneville M, O’Brien RL, Born WK. γδ T cell effector functions: a blend of innate

programming and acquired plasticity. Nat. Rev. Immunol. 2010; 10:467- 478.

115

induce selective disappearance of peripheral blood cells: concomitant results to a phase

I/II study. PLoS ONE. 2011; 6:e27351.

28. Brown CMS, Larsen SR, Iland HJ, Joshua DE, Gibson J. Leukaemias into the 21st

century: part 1: the acute leukaemias. Clinical perspectives 2012; 1179-1186.

29. Burnett AK, Russell NH, Kell J, et al. European development of clofarabine as treatment

for older patients with acute myeloid leukemia considered unsuitable for intensive

chemotherapy. J Clin Oncol. 2010; 28:2389-2395.

30. Burnett RC, Thirman MJ, Rowley JD, Diaz MO. Molecular analysis of the T-cell acute

lymphoblastic leukemia-associated t(1;7)(p34;q34) that fuses LCK and TCRB. Blood

1994; 84:1232-1236.

31. Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, et al. IL-2-based

immunotherapy after autologous transplantation for lymphoma and breast cancer induces

immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 2003;

32:177-186.

32. Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, et al. Interleukin

(IL) 15 is a novel cytokine that activates human natural killer cells via components of the

IL-2 receptor. J Exp Med. 1994; 180:1395-1403.

33. Chalandon Y, Schwaller J. Targeting mutated protein tyrosine kinases and their signaling

pathways in hematologic malignancies. Haematologica. 2005; 90:949-968.

34. Chapuis AG, Ragnarsson GB, Nguyen HN, et al. Transferred WT1-reactive CD8+ T cells

can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med.

2013; 5:174-198.

35. Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, et al.

Documents relatifs