• Aucun résultat trouvé

entre les deux canaux selon la commande Labview pour 2 niveaux de commande AOTF (e)

Figure C.7 Puissance du laser pour les longueurs d'onde d'excitation et d'émission selon le temps de

chaue (a & b), selon la commande AOTF (c) et selon la commande Labview (d). Ratio des puissances

entre les deux canaux selon la commande Labview pour 2 niveaux de commande AOTF (e).

Bibliographie

[1] Chun-Min Lo, Hong-Bei Wang, Micah Dembo, and Yu-li Wang. Cell movement is guided by the

rigidity of the substrate. Biophysical journal, 79(1) :144152, 2000.

[2] Adam J Engler, Shamik Sen, H Lee Sweeney, and Dennis E Discher. Matrix elasticity directs stem

cell lineage specication. Cell, 126(4) :677689, 2006.

[3] Sami Alom Ruiz and Christopher S Chen. Emergence of patterned stem cell dierentiation within

multicellular structures. Stem cells, 26(11) :29212927, 2008.

[4] Claire M Wells and Maddy Parsons. Cell migration : developmental methods and protocols. Springer,

2011.

[5] Marie-Pierre Valignat, Olivier Theodoly, Alexia Gucciardi, Nancy Hogg, and Annemarie C Lellouch.

T lymphocytes orient against the direction of uid ow during lfa-1-mediated migration. Biophysical

journal, 104(2) :322331, 2013.

[6] Maggie A Ostrowski, Ngan F Huang, Travis W Walker, Tom Verwijlen, Charlotte Poplawski,

Amanda S Khoo, John P Cooke, Gerald G Fuller, and Alexander R Dunn. Microvascular

en-dothelial cells migrate upstream and align against the shear stress eld created by impinging ow.

Biophysical journal, 106(2) :366374, 2014.

[7] Boris Martinac. Mechanosensitive ion channels : molecules of mechanotransduction. Journal of cell

science, 117(12) :24492460, 2004.

[8] Bertrand Coste, Jayanti Mathur, Manuela Schmidt, Taryn J Earley, Sanjeev Ranade, Matt J Petrus,

Adrienne E Dubin, and Ardem Patapoutian. Piezo1 and piezo2 are essential components of distinct

mechanically activated cation channels. Science, 330(6000) :5560, 2010.

[9] Bifeng Pan, Gwenaelle S Géléoc, Yukako Asai, Georey C Horwitz, Kiyoto Kurima, Kotaro

Ishi-kawa, Yoshiyuki Kawashima, Andrew J Grith, and Jerey R Holt. Tmc1 and tmc2 are

com-ponents of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron,

79(3) :504515, 2013.

[10] John M Tarbell and MY Pahakis. Mechanotransduction and the glycocalyx. Journal of internal

medicine, 259(4) :339350, 2006.

[11] John M Tarbell and Eno E Ebong. The endothelial glycocalyx : a mechano-sensor and-transducer.

Science signaling, 1(40) :pt8pt8, 2008.

[12] Veena Singla and Jeremy F Reiter. The primary cilium as the cell's antenna : signaling at a sensory

organelle. science, 313(5787) :629633, 2006.

[13] Nicolas F Berbari, Amber K O'Connor, Courtney J Haycraft, and Bradley K Yoder. The primary

cilium as a complex signaling center. Current biology, 19(13) :R526R535, 2009.

[14] David A Hoey, Shane Tormey, Stacy Ramcharan, Fergal J O'Brien, and Christopher R

Ja-cobs. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem cells,

30(11) :25612570, 2012.

Bibliographie

[15] Muhammad H Zaman, Linda M Trapani, Alisha L Sieminski, Drew MacKellar, Haiyan Gong,

Roger D Kamm, Alan Wells, Douglas A Lauenburger, and Paul Matsudaira. Migration of tumor

cells in 3d matrices is governed by matrix stiness along with cell-matrix adhesion and proteolysis.

Proceedings of the National Academy of Sciences, 103(29) :1088910894, 2006.

[16] Theresa A Ulrich, Elena M de Juan Pardo, and Sanjay Kumar. The mechanical rigidity of the

extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer

research, 69(10) :41674174, 2009.

[17] Xiaoyue Ma, Maureen E Schickel, Mark D Stevenson, Alisha L Sarang-Sieminski, Keith J Gooch,

Samir N Ghadiali, and Richard T Hart. Fibers in the extracellular matrix enable long-range stress

transmission between cells. Biophysical journal, 104(7) :14101418, 2013.

[18] Ido Nitsan, Stavit Drori, Yair E Lewis, Shlomi Cohen, and Shelly Tzlil. Mechanical communication

in cardiac cell synchronized beating. Nature Physics, 12(5) :472477, 2016.

[19] Katharina Austen, Pia Ringer, Alexander Mehlich, Anna Chrostek-Grasho, Carleen Kluger,

Chris-toph Klingner, Benedikt Sabass, Roy Zent, Matthias Rief, and Carsten Grasho. Extracellular

rigidity sensing by talin isoform-specic mechanical linkages. Nature cell biology, 17(12) :1597,

2015.

[20] Iain D Campbell and Mark H Ginsberg. The talintail interaction places integrin activation on

ferm ground. Trends in biochemical sciences, 29(8) :429435, 2004.

[21] Wolfgang H Ziegler, Robert C Liddington, and David R Critchley. The structure and regulation of

vinculin. Trends in cell biology, 16(9) :453460, 2006.

[22] J Thomas Parsons, Alan Rick Horwitz, and Martin A Schwartz. Cell adhesion : integrating

cytos-keletal dynamics and cellular tension. Nature reviews Molecular cell biology, 11(9) :633, 2010.

[23] Christopher E Turner. Paxillin and focal adhesion signalling. Nature cell biology, 2(12) :E231, 2000.

[24] Tracee S Panetti. Tyrosine phosphorylation of paxillin, fak, and p130cas : eects on cell spreading

and migration. Front Biosci, 7(January) :d143d150, 2002.

[25] Martin Rühl, Manfred Johannsen, Jane Atkinson, Dirk Manski, Ergün Sahin, Rajan

Somasunda-ram, Ernst Otto Riecken, and Detlef Schuppan. Soluble collagen vi induces tyrosine phosphorylation

of paxillin and focal adhesion kinase and activates the map kinase erk2 in broblasts. Experimental

cell research, 250(2) :548557, 1999.

[26] Rony Seger and Edwin G Krebs. The mapk signaling cascade. The FASEB journal, 9(9) :726735,

1995.

[27] Hermann Aberle, Hillel Schwartz, and Rolf Kemler. Cadherin-catenin complex : protein interactions

and their implications for cadherin function. Journal of cellular biochemistry, 61(4) :514523, 1996.

[28] Frauke Drees, Sabine Pokutta, Soichiro Yamada, W James Nelson, and William I Weis. α-catenin

is a molecular switch that binds e-cadherin-β-catenin and regulates actin-lament assembly. Cell,

123(5) :903915, 2005.

[29] Craig D Buckley, Jiongyi Tan, Karen L Anderson, Dorit Hanein, Niels Volkmann, William I Weis,

W James Nelson, and Alexander R Dunn. The minimal cadherin-catenin complex binds to actin

laments under force. Science, 346(6209) :1254211, 2014.

[30] Kevin D Costa, William J Hucker, and Frank C-P Yin. Buckling of actin stress bers : a new

wrinkle in the cytoskeletal tapestry. Cell motility and the cytoskeleton, 52(4) :266274, 2002.

[31] Ovijit Chaudhuri, Sapun H Parekh, and Daniel A Fletcher. Reversible stress softening of actin

networks. Nature, 445(7125) :295, 2007.

Bibliographie

[32] George W Greene, Travers H Anderson, Hongbo Zeng, Bruno Zappone, and Jacob N Israelachvili.

Force amplication response of actin laments under conned compression. Proceedings of the

National Academy of Sciences, 106(2) :445449, 2009.

[33] Anthony C Schramm, Glen M Hocky, Gregory A Voth, Laurent Blanchoin, Jean-Louis Martiel, and

M Enrique. Actin lament strain promotes severing and colin dissociation. Biophysical Journal,

112(12) :26242633, 2017.

[34] A Jégou, MF Carlier, and G Romet-Lemonne. Formin mdia1 senses and generates mechanical forces

on actin laments. nat commun 2013 ; 4 : 1883 ; pmid : 23695677. Nature communications, 2013.

[35] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Ra, Keith Roberts, and Peter Walter.

Documents relatifs