• Aucun résultat trouvé

Calibration procedure

Drift and Asymmetry Corrections

6.4. CALIBRATION 105 Theorem 6.1 (Bias of Variance Swap premium)

6.4.3 Calibration procedure

In this subsection, we resume the calibration procedure of PBS model using Variance Swap secu-rities and we propose some improvements and remarks.

The basic procedure is the following one:

Algorithm 6.5 (Calibration of Perturbative Black Scholes model)

1. for each maturity T, compute, using vanilla contingent claims prices founded on the market, the price of Variance Swap over the same period, and set the value on cumulated volatility σ0(T)√

T to be equal to the square root of Variance Swap premium;

2. fix a bearable risk probability α <0.5(this parameter is the only exogenous one, an economic argument is needed);

3. evaluate the bid-ask spread on the market and, using theorem 6.2, fix the variance of cumu-lated volatility ǫ Γh

ςT

√Ti

σ0(T) T;

4. choose a really traded vanilla option with a strike around the money and compute the bias of cumulated volatility ǫ Ah

ςT

√Ti

σ0(T)

T, thanks to equation (6.18).

Remark 6.4 Clearly, this procedure is a rough estimate and it is inconsistent, since PBS price for Variance Swap securities depends on the bias, see equation (6.14). Another drawback concerns the choice of At-The-Money option, calibration result depends deeply on this selection.

In order to avoid the inconsistence of previous calibration procedure, we propose to iterate it until the estimated parameters verify relation (6.5) with a set accuracy. At the end of a loop, we hold the previous value for bias and variance of cumulated volatility and we define a new estimation of this one, thanks to relation (6.5). In order to strengthen the calibration, we propose to fix a basket of at-the-money vanilla options and to fit the bias of volatility over this basket rather than to choose a single option.

6.5 Conclusion

In this chapter we have proposed a calibration procedure for Perturbative Black Scholes model, see chapter 4, based on prices of Variance Swap securities. Variance Swaps are a no-risk-model contingent claims, so their premium represents an implicit constraint to be verify by a calibrated model. In the last section, we have showed an iterative procedure that can be performed quickly, thanks to the closed-forms relations of each step. The only exogenous parameter remains the bearable risk probability accepted by the trader in exchange for the expected return.

Bibliography

[1] Albeverio, S. (2003): Theory of Dirichlet forms and application, Springer-Verlag, Berlin.

[2] Alfonsi, A.; Schied, A.; Schulz, A.: Optimal execution strategies in limit order books with general shape functions, Preprint, Hal-00166969.

[3] Almgren, R. (2003): Optimal execution with nonlinear impact functions and trading-enhanced risk, Applied Mathematical Finance, 10, pages 1-18.

[4] Almgren, R.; Lorenz, J.(2007): Adaptative arrival priceIn: Algorithmic Trading III: Precision, Control, Execution; Brian R. Bruce editor, Institutional Investor Journals

[5] Almgren, R.; Thum, C.; Hauptmann, E.; Li, E. (2005): Equity Market impact, Risk.

[6] Amihud, Y.; Mendelson, H. (1986): Asset pricing and the bid-ask spread, Journal of Financial Economics Vol 17, Issue 2, Pages 223-249

[7] Azencott, R. (1982): Formule de Taylor Stochastique et developpement asymptotique d’integrales de Feynman, Seminaire de probabilites (Strasbourg), 16, pages 237-285.

[8] Bertsimas, D.; Lo, A. (1998): Optimal Control of Execution Costs, Journal of Financial Mar-kets, 1 pages 1-50.

[9] Biais, B.; Hillion, P.; Spatt, C. (1995): An empirical analysis of the limit order book and order flow in Paris Bourse, Journal of Finance 50, pages 1655-1689.

[10] Black, F.; Scholes M. (1973): The Pricing of Options and Corporate Liabilities, J. Political Econ. 81 page 637-659.

[11] Bouleau, N.; Hirsch, F. (1991): Dirichlet Forms and Analysis on Wiener space, De Gruyter, Berlin.

[12] Bouleau, N. (2003): Error Calculus for Finance and Physics, De Gruyter, Berlin.

[13] Bouleau, N. (2003): Error Calculus and path sensivity in financial models , Mathematical Finance, 13-1, page 115-134.

[14] Bouleau, N.; Chorro, Ch. (2004): Structures d’erreur et estimation param´etrique , C.R.

Accad. Sci. ,1338, page 305-311.

109

[15] Bouleau, N. (2005): Improving Monte Carlo simulations by Dirichlet Forms, C.R. Acad. Sci.

Paris Ser I (2005) page 303-306.

[16] Bouleau, N. (2006): When and how an error yields a Dirichlet form, Journal of Functional Analysis, 240-2, page 445-494.

[17] Brigo, D.; Mercurio, F.; Rapisarda, F. (2002): Lognormal-Mixture Dynamics and Calibration to Market Volatility Smiles, Int. J. of Theoretical and Appl. Finance, vol 5, issue 4, pages 427-446.

[18] Buehler, H. (2006): Consistent Variance Curve Models , Finance and Stochastic, 10, pages 178-203.

[19] Carr, P.; Geman, H.; Madan D.B. and Yor M. (2005)Pricing Options on Realized Variance, EFA 2005 Moscow Meetings Paper. Available at SSRN: http://ssrn.com/abstract=684087 [20] Christensen, B., Prabhala, N. (1998): Relation between implied and realized volatility, Journal

of Financial Economics, 50, 125-150.

[21] Cohen, K.; Maier, S.; Schwartz, R.; Whitcomb, D. (1979) Makers and the Market Spreads:

A review of recent Litterature, J. of Financial and Quantitative Analysis, Vol 14, Page 813.

[22] Cohen, K.; Maier, S.; Schwartz, R.; Whitcomb, D. (1979)Transation Costs, Order Placement Strategy and Existence of the Bid-Ask Spread, J. of Political Economy, Vol 89, Page 287.

[23] Constantinides, G., Jackwerth, J., Perrakis, S. (2008): Mispricing of S&P 500 Index Options, Review of Financial Studies, forthcoming.

[24] Cont, R.; Tankov, P. (2004): Financial Modelling with Jump Processes, Chapman & Hall and CRC press, Boca Raton

[25] Da Prato, G.; Zabczyk, J. (1992): Stochastic Equations in Infinite Dimentions, Cambridge University Press, Cambridge.

[26] Demeterfi, K.; Derman, E.; Kamal, M. and Zou, J. (1999) More than you Ever Wanted to Know about Volatility Swaps, Quantitative Strategies Research Notes, Golman Sachs.

[27] Derman, E.; Kamal, M.; Kani, I. and Zou, J. (1996) Valuing Contracts with Payoffs based on Realized Volatility, Global Derivatives Quarterly Review, Golman Sachs.

[28] Dupire, B. (1994): Pricing with Smile, RISK, January 1994.

[29] Eraker, B., Johannes, M., Polson, N. (2003): The Impact of Jumps in Volatility and Returns, Journal of Finance, 58, 3, 1269-1300.

[30] Flandoli, F.; Russo F. (2002): Generalized Integration and Stochastic ODEs, The Annals of Probability,30, 1, page 270-292.

[31] Fouque, J. P., Papanicolau, G. and Sircar, R. (2000).Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge.

BIBLIOGRAPHY 111 [32] Fukushima, M.; Oshima, Y.; Takeda, M. (1994): Dirichlet Forms and Markov Process, De

Gruyter, Berlin.

[33] Garman, M.; Kohlhagen, S. (1983): Foreign currency option values, J. Int. Money Fin. 2, pages 231-237.

[34] Gross, L. (1965): Abstract Wiener Spaces, Proc. 5th Berkeley Sym. Math. Stat. Prob. 2 (1965) page 31-42.

[35] Hagan, P.; Kumar, D.; Lesniewsky, A.; Woodward, D. (2002)Managing Smile RiskWillmot magazine 1, page 84-108.

[36] Hagan, P.; Woodward, D.; (1999)Equivalent Black Volatilities, Appl. Mathematical Finance, vol 6, issue 3, pages 147-157.

[37] Hamza, M. M. (1975): D´etermination des formes de Dirichlet surRn, PhD thesis, Universit´e d’Orsay, Paris.

[38] Heston, S.(1993): A Closed-form Solution for Options with Stochastic Volatility with Appli-cations to Bond and Currency Options, Review of Financial Studies, 6, 2, 327-343.

[39] Hull, J., White, A. (1987): The Pricing of Options on Assets with Stochastic Volatility, Journal of Finance, 42, 2, 281-300.

[40] Jackwerth, J., Rubinstein, M. (1996): Recovering Probability Distributions from Option Prices, Journal of Finance, 51, 5, 1611-1631.

[41] Karatzas, I.; Shreve, I.E. (1991): Brownian Motion and Stochastic Calculus Second Edition, Springer, Berlin.

[42] Lamberton, D.; Lapeyre, B. (1995): Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall, London.

[43] Lo, A., Wang, J. (1995): Implementing Option Pricing Models When Asset Returns are Predictable.

[44] Neuberger, A. (1994): The Log-Contract: A new Instrument to Hedge Volatility, J. of Port-folio Management, Winter, page 74-80.

[45] Nualart, D. (1995): The Malliavin Calculus and Related Topics, Springer-Verlag, Berlin.

[46] Obizhaeva, A.; Wang, J.: Optimal Trading Strategy and Supply/Demand Dynamics, fourth-coming in Journal of Financial Markets.

[47] Oksendal, B. (1997): An Introduction to Malliavin Calculus with applications to Economics, Norvegian Shool of Economics and Business Administration, Lecture notes.

[48] Perignon, C.; Villa, C. (2002): Extracting Information from Options Markets: Smiles, State-Price Densities and risk Aversion, European Financial Management Vol. 8 No. 4 page 495-513.

[49] Potters, M.; Bouchaud, J.P. (2003): More statistical properties of order books and price impact, Physica A, 324, pages 133-140.

[50] Protter, P. (1990): Stochastic Integration and Differential Equations: A new Approach, Springer-Verlag, Berlin.

[51] Renault, E.; Touzi, N. (1996): Option Hedging and Implied Volatilities in a Stochastic Volatil-ity Model, Mathematical Finance Vol. 6 No. 3 page 279-302.

[52] Rubinstein, M. (1985): Non Parametric Test of Alternative Option Pricing Models using all Reported Trades and Quotes on the 30 most active CBOE Option classes from August 23, 1976 through August 31, 1978, J. of Finance Vol. 40 page 455-480.

[53] Scotti, S. (2007): Perturbative Approach on Financial Markets, Preprint.

[54] Scotti, S. (2007): Calibration of Perturbative Black Scholes model with Variance Swaps, Report No.2, 2007/2008, fall, Institut Mittag-Leffler, the Royal Swedish Academy of Sciences.

[55] Stoll, H., Whaley, R. (1989): Stock Market Structure and Volatility, Review of Financial Studies, 3, 1, National Bureau of Economic Research Conference: Stock Market Volatility and the Crash, Dorado Beach, March 16-18, 37-71.

Part III

Partial Differential Equations and

Documents relatifs