• Aucun résultat trouvé

C ATTRIBUTING THE IMPACTS

Dans le document THE GLOBAL BIODIVERSITY SCORE (Page 39-43)

816

Past emissions generated the static impacts, which are not attributed to any economic activity.

817

100% of the impacts dimensioned for GHG emitted during the period assessed with the GBS are attributed 818

to the emission source, as dynamic impacts.

819

5.3 Refined assessment

820

The refined climate change impacts on biodiversity can be computed in the GBS based on GHG emission 821

data. The possible data format (Scopes, perimeter…) are detailed in the GBS data collection guide (CDC 822

Biodiversité 2019a). For now, in the GBS, climate change impacts are counted only as dynamic impacts.

823

Figure 18 explains the computation process.

824

The GBS enables the computation of the biodiversity impacts of the following gases families: carbon dioxide 825

(CO2), fossil and biogenic methane (CH4), nitrous oxide (N2O), sulphur hexafluoride (SF6), 826

hydrofluorocarbons (HFCs) and perfulorocabons (PFCs). The time horizon is either 20 or 100 years.

827

The function ghg_get_emission_MSA_impact() converts a quantity of emitted GHG (in kg of GHG, no in kg 828

CO2-eq) to an MSA.area impact, by associating each GHG to its GWP (for CO2-eq conversion, they are 829

presented in Table 3) at a given time horizon and the corresponding MSA impact factor in MSA.km²/kg CO2 -830

eq. These factors are also used for default assessments. This function can be applied to different ranges of 831

GHG emissions values depending on the data uncertainties, and therefore lead to different results with the 832

central, optimistic or pessimistic calculation modesl.The used impact factors are in the data quality tier 1 as 833

they are based on international default values.

834

Two other functions are used in other GBS features but not directly for the refined assessment of climate 835

change:

836

- The function ghg_get_emission_kg_co2_eq() converts anemitted quantity of Greenhouse effect 837

gas (GHG) to a quantity of kg CO2-eq, thanks to the Global Warming Potentials (GWP) 838

presented in Table 3 consistent with the IPCC (Stocker 2014).

839

- The function ghg_get_emission_temperature_increase() converts an emitted quantity of GHG 840

(in CO2-eq) into a temperature increase in °C, by applying to the emission in CO2-eq the IAGTP 841

(Integrated absolute global mean temperature potential in °C/kg CO2-eq) for a time horizon of 842

20 or 100 years derived from (Joos et al. 2013) and dividing per number of years considered.

843

The principle is illustrated by Figure 16.

844

5.4 Limits and future development

845

For the refined climate change assessment, a function pressure_CC_evaluator() will be built to link and 846

integrate the features presented in this section to directly use corporate input data and assess dynamic 847

and static impacts.

848 849

References

850

Alkemade, R., R. S. Reid, M. van den Berg, J. de Leeuw, and M. Jeuken. 2013. ‘Assessing the Impacts of 851

Livestock Production on Biodiversity in Rangeland Ecosystems’. Proceedings of the National 852

Academy of Sciences 110 (52): 20900–905. https://doi.org/10.1073/pnas.1011013108.

853

Alkemade, Rob, Mark van Oorschot, Lera Miles, Christian Nellemann, Michel Bakkenes, and Ben ten Brink.

854

2009. ‘GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity 855

Loss’. Ecosystems 12 (3): 374–90. https://doi.org/10.1007/s10021-009-9229-5.

856

Arets, Eric J.M.M., Caspar Verwer, and Rob Alkemade. 2014. ‘Meta-Analysis of the Effect of Global 857

Warming on Local Species Richness’.

858

Benítez-López, Ana, Rob Alkemade, and Pita A. Verweij. 2010. ‘The Impacts of Roads and Other 859

Infrastructure on Mammal and Bird Populations: A Meta-Analysis’. Biological Conservation 143 (6):

860

1307–1316.

861

Bouwman, A. F., D. P. Van Vuuren, R. G. Derwent, and Michael Posch. 2002. ‘A Global Analysis of 862

Acidification and Eutrophication of Terrestrial Ecosystems’. Water, Air, and Soil Pollution 141 (1–

863

4): 349–382.

864

Bouwman, Alexander Felix, Tom Kram, and Ke Klein Goldewijk. 2006. ‘Intergrated Modelling of Global 865

Environmenthal Change: An Overview of IMAGE 2.4’.

866

CDC Biodiversité. 2017. ‘Global Biodiversity Score: Measuring a Company’s Biodiversity Footprint’. 11.

867

Biodiv’2050 Outlook.

868

———. 2019a. ‘GBS Biodiversity Footprint Assessments Documentation: Data Collection Guidelines’.

869

———. 2019b. ‘Global Biodiversity Score: A Tool to Establish and Measure Corporate and Financial 870

Commitments for Biodiversity’. 14. Biodiv’2050 Outlook. CDC Biodiversité.

871

———. 2020a. ‘GBS Review: Core Concepts’.

872

———. 2020b. ‘GBS Review: Ecotoxicity Pressures on Biodiversity’.

873

CDC Biodiversité, ASN Bank, and ACTIAM. 2018. ‘Common Ground in Biodiversity Footprint Methodologies 874

for the Financial Sector’. Paris: ACTIAM, ASN Bank, CDC Biodiversité. Supported by Finance in 875

Motion. https://www.asnbank.nl/web/file?uuid=b71cf717-b0a6-47b0-8b96-876

47b6aefd2a07&owner=6916ad14-918d-4ea8-80ac-f71f0ff1928e&contentid=2412.

877

Díaz, S., J. Settele, E. Brondízio, H. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. Brauman, and S.

878

Butchart. 2019. ‘Summary for Policymakers of the Global Assessment Report on Biodiversity and 879

Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and 880

Ecosystem Services (IPBES)’. IPBES.

881

Dixon, John A., David P. Gibbon, and Aidan Gulliver. 2001. Farming Systems and Poverty: Improving 882

Farmers’ Livelihoods in a Changing World. Food & Agriculture Org.

883

Heijungs, Reinout, Jeroen B. Guinée, Gjalt Huppes, Raymond M. Lankreijer, H. A. Udo de Haes, A. Wegener 884

Sleeswijk, A. M. M. Ansems, P. G. Eggels, R. van Duin, and H. P. De Goede. 1992. ‘Environmental 885

Life Cycle Assessment of Products: Guide and Backgrounds (Part 1)’.

886

Joos, F., R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, et al. 2013. ‘Carbon 887

Dioxide and Climate Impulse Response Functions for the Computation of Greenhouse Gas Metrics:

888

A Multi-Model Analysis’. Atmospheric Chemistry and Physics 13 (5): 2793–2825.

889

https://doi.org/10.5194/acp-13-2793-2013.

890

Kok, Marcel, Rob Alkemade, Michel Bakkenes, Eline Boelee, Villy Christensen, M. Van Eerdt, Stefan van 891

der Esch, Jan Janse, SISE Karlsson-Vinkhuyzen, and Tom Kram. 2014. How Sectors Can 892

Contribute to Sustainable Use and Conservation of Biodiversity. 79. PBL.

893

MacDicken, K., Ö Jonsson, L. Piña, S. Maulo, V. Contessa, Y. Adikari, M. Garzuglia, E. Lindquist, G. Reams, 894

and R. D’Annunzio. 2016. ‘Global Forest Resources Assessment 2015: How Are the World’s 895

Forests Changing?’

896

Marquardt, Sandra G., Michael Guindon, Harry C. Wilting, Zoran J.N. Steinmann, Sarah Sim, Michal Kulak, 897

and Mark A.J. Huijbregts. 2019. ‘Consumption-Based Biodiversity Footprints – Do Different 898

Indicators Yield Different Results?’ Ecological Indicators 103 (August): 461–70.

899

https://doi.org/10.1016/j.ecolind.2019.04.022.

900

Schipper, Aafke M., Jelle P. Hilbers, Johan R. Meijer, Laura H. Antão, Ana Benítez-López, Melinda MJ de 901

Jonge, Luuk H. Leemans, Eddy Scheper, Rob Alkemade, and Jonathan C. Doelman. 2020.

902

‘Projecting Terrestrial Biodiversity Intactness with GLOBIO 4’. Global Change Biology 26 (2): 760–

903

771.

904

Schipper, Aafke M., Johan R. Meijer, Rob Alkemade, and Mark A. J. Huijbregts. 2016. ‘The GLOBIO Model:

905

A Technical Description of Version 3.5’. The Hague: Netherlands Environmental Agency (PBL).

906

http://www.pbl.nl/sites/default/files/cms/publicaties/pbl_publication_2369.pdf.

907

Stocker, Thomas. 2014. Climate Change 2013: The Physical Science Basis: Working Group I Contribution 908

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 909

University Press.

910

Verboom, Jana, Rob Alkemade, Jan Klijn, Marc J. Metzger, and Rien Reijnen. 2007. ‘Combining Biodiversity 911

Modeling with Political and Economic Development Scenarios for 25 EU Countries’. Ecological 912

Economics 62 (2): 267–276.

913

Wilting, Harry C., and Mark M. P. van Oorschot. 2017. ‘Quantifying Biodiversity Footprints of Dutch 914

Economic Sectors: A Global Supply-Chain Analysis’. Journal of Cleaner Production 156 (July):

915

194–202. https://doi.org/10.1016/j.jclepro.2017.04.066.

916

WWF. 2019. ‘Deforestation Fronts’. 2019. https://wwf.panda.org/our_work/forests/deforestation_fronts2/.

917

102, rue Réaumur 75002 PARIS T. +33 (0)1 80 40 15 00

contact@cdc-biodiversite.fr www.cdc-biodiversite.fr

SAS au capital de 17 475 000 euros RCS Paris 501 639 587 Siret 501 639 587 00028 - APE 6420Z

N° TVA Intracom. FR51501639587

Dans le document THE GLOBAL BIODIVERSITY SCORE (Page 39-43)

Documents relatifs