• Aucun résultat trouvé

1. Thomas, E. D., Lochte, H. L., Lu, W. C. & Ferrebee, J. W. Intravenous Infusion of Bone Marrow in Patients Receiving Radiation and Chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).

2. Baldomero, H. et al. Narrowing the gap for hematopoietic stem cell transplantation in the East-Mediterranean/African region: comparison with global HSCT indications and trends.

Bone Marrow Transplant. (2018) doi:10.1038/s41409-018-0275-5.

3. Jaimovich, G. et al. Latin America: the next region for haematopoietic transplant progress.

Bone Marrow Transplant. 52, 671–677 (2017).

4. Henig, I. & Zuckerman, T. Hematopoietic Stem Cell Transplantation—50 Years of Evolution and Future Perspectives. Rambam Maimonides Med. J. 5, e0028 (2014).

5. Gratwohl, A. et al. One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2, e91–e100 (2015).

6. for the Worldwide Network of Blood and Marrow Transplantation (WBMT) et al.

Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey. Bone Marrow Transplant. 51, 778–785 (2016).

7. for the European Society for Blood and Marrow Transplantation (EBMT) et al.

Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 51, 786–792 (2016).

8. Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

9. Chiesa, R., Wynn, R. & Veys, P. Haematopoietic stem cell transplantation in inborn errors of metabolism. Curr. Opin. Hematol. 23, 530–535 (2016).

10. Siegel, D. A. et al. Cancer Incidence Rates and Trends Among Children and Adolescents in the United States, 2001-2009. PEDIATRICS 134, e945–e955 (2014).

11. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA. Cancer J. Clin. 67, 7–30 (2017).

12. Cunningham, R. M., Walton, M. A. & Carter, P. M. The Major Causes of Death in Children and Adolescents in the United States. N. Engl. J. Med. 379, 2468–2475 (2018).

13. Brown, P. A. et al. NCCN Guidelines Insights: Acute Lymphoblastic Leukemia, Version 1.2017. J. Natl. Compr. Canc. Netw. 15, 1091–1102 (2017).

14. Roberts, K. G. et al. Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

15. from the Children’s Oncology Group et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0031. Leukemia 28, 1467–1471 (2014).

57

16. Maude, S. L. et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

17. Grupp, S. A. et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

18. von Stackelberg, A. et al. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 34, 4381–4389 (2016).

19. Kantarjian, H. M. et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 375, 740–753 (2016).

20. Frey, N. & Porter, D. Cytokine Release Syndrome with Chimeric Antigen Receptor T cell Therapy. Biol. Blood Marrow Transplant. (2018) doi:10.1016/j.bbmt.2018.12.756.

21. the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network et al.

Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 16, 45–63 (2019).

22. Tasian, S. K., Pollard, J. A. & Aplenc, R. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia. Front. Oncol. 4, (2014).

23. Faulk, K., Gore, L. & Cooper, T. Overview of Therapy and Strategies for Optimizing Outcomes in De Novo Pediatric Acute Myeloid Leukemia. Pediatr. Drugs 16, 213–227 (2014).

24. Rubnitz, J. E. Current Management of Childhood Acute Myeloid Leukemia. Pediatr.

Drugs 19, 1–10 (2017).

25. Körbling, M. & Freireich, E. J. Twenty-five years of peripheral blood stem cell transplantation. Blood 117, 6411–6416 (2011).

26. Boulais, P. E. & Frenette, P. S. Making sense of hematopoietic stem cell niches. Blood 125, 2621–2629 (2015).

27. Bendall, L. J. & Bradstock, K. F. G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine Growth Factor Rev 25, 355–67 (2014).

28. Yoshimi, A. et al. Global Use of Peripheral Blood vs Bone Marrow as Source of Stem Cells for Allogeneic Transplantation in Patients With Bone Marrow Failure. JAMA 315, 198–

200 (2016).

29. Bender, J. G., To, L. B., Williams, S. & Schwartzberg, L. S. Defining a therapeutic dose of peripheral blood stem cells. J. Hematother. 1, 329–341 (1992).

30. Hopman, R. K. & DiPersio, J. F. Advances in stem cell mobilization. Blood Rev. 28, 31–

40 (2014).

31. Vo, L. T. & Daley, G. Q. De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood 125, 2641–2648 (2015).

32. Olsson, R. et al. Graft failure in the modern era of allogeneic hematopoietic SCT. Bone Marrow Transplant. 48, 537–543 (2013).

58

33. Brown, V. I. Engraftment and Chimerism. in Hematopoietic Stem Cell Transplantation for the Pediatric Hematologist/Oncologist (ed. Brown, V. I.) 177–186 (Springer International Publishing, 2018). doi:10.1007/978-3-319-63146-2_10.

34. Bach, C. et al. Systematic comparison of donor chimerism in peripheral blood and bone marrow after hematopoietic stem cell transplantation. Blood Cancer J. 7, e566 (2017).

35. Ozdemir, Z. N. & Civriz Bozdağ, S. Graft failure after allogeneic hematopoietic stem cell transplantation. Transfus. Apher. Sci. Off. J. World Apher. Assoc. Off. J. Eur. Soc.

Haemapheresis 57, 163–167 (2018).

36. Zeiser, R. & Blazar, B. R. Acute Graft-versus-Host Disease - Biologic Process, Prevention, and Therapy. N. Engl. J. Med. 377, 2167–2179 (2017).

37. Gyurkocza, B. & Sandmaier, B. M. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood 124, 344–353 (2014).

38. Blazar, B. R., Murphy, W. J. & Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 12, 443–458 (2012).

39. Apostolova, P. & Zeiser, R. The role of danger signals and ectonucleotidases in acute graft-versus-host disease. Hum. Immunol. 77, 1037–1047 (2016).

40. Andermann, T. M., Rezvani, A. & Bhatt, A. S. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation. Curr. Hematol. Malig. Rep.

11, 19–28 (2016).

41. Shono, Y. et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci.

Transl. Med. 8, 339ra71-339ra71 (2016).

42. Petersdorf, E. W. The major histocompatibility complex: a model for understanding graft-versus-host disease. Blood 122, 1863–1872 (2013).

43. Dickinson, A. M. et al. Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia. Front. Immunol. 8, (2017).

44. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies.

(Springer International Publishing, 2019). doi:10.1007/978-3-030-02278-5.

45. Orti, G. et al. Donor lymphocyte infusions in AML and MDS: Enhancing the graft-versus-leukemia effect. Exp. Hematol. 48, 1–11 (2017).

46. Zhang, L., Yu, J. & Wei, W. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease. Front. Immunol. 9, (2018).

47. Cutler, C. et al. Prediction of veno-occlusive disease using biomarkers of endothelial injury. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 16, 1180–

1185 (2010).

48. Carreras, E. & Diaz-Ricart, M. The role of the endothelium in the short-term

complications of hematopoietic SCT. Bone Marrow Transplant. 46, 1495–1502 (2011).

59

49. Mohty, M. et al. Revised diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a new classification from the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 51, 906–912 (2016).

50. Corbacioglu, S. et al. Diagnosis and severity criteria for sinusoidal obstruction

syndrome/veno-occlusive disease in pediatric patients: a new classification from the European society for blood and marrow transplantation. Bone Marrow Transplant. 53, 138–145 (2018).

51. Corbacioglu, S. et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. The Lancet 379, 1301–1309 (2012).

52. Carreras, E. et al. The Incidence of Veno-Occlusive Disease Following Allogeneic Hematopoietic Stem Cell Transplantation Has Diminished and the Outcome Improved over the Last Decade. Biol. Blood Marrow Transplant. 17, 1713–1720 (2011).

53. Corbacioglu, S. & Richardson, P. G. Defibrotide for children and adults with hepatic veno-occlusive disease post hematopoietic cell transplantation. Expert Rev. Gastroenterol.

Hepatol. 11, 885–898 (2017).

54. Markey, K. A., MacDonald, K. P. A. & Hill, G. R. The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood 124, 354–362 (2014).

55. Ferrara, J. L., Levine, J. E., Reddy, P. & Holler, E. Graft-versus-host disease. 373, 12 (2009).

56. Jagasia, M. et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood 119, 296–307 (2012).

57. Lee, S. J. Classification systems for chronic graft-versus-host disease. Blood 129, 30–37 (2017).

58. Cooke, K. R. et al. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 23, 211–234 (2017).

59. Kanakry, C. G. et al. Aldehyde Dehydrogenase Expression Drives Human Regulatory T Cell Resistance to Posttransplantation Cyclophosphamide. Sci. Transl. Med. 5, 211ra157-211ra157 (2013).

60. Kröger, N. et al. Antilymphocyte Globulin for Prevention of Chronic Graft-versus-Host Disease. N. Engl. J. Med. 374, 43–53 (2016).

61. Arai, S. et al. Increasing Incidence of Chronic Graft-versus-Host Disease in Allogeneic Transplantation: A Report from the Center for International Blood and Marrow Transplant Research. Biol. Blood Marrow Transplant. 21, 266–274 (2015).

62. Baker, K. S. et al. Diabetes, hypertension, and cardiovascular events in survivors of hematopoietic cell transplantation: a report from the bone marrow transplantation survivor study. Blood 109, 1765–1772 (2007).

60

63. Panoskaltsis-Mortari, A. et al. An official American Thoracic Society research statement:

noninfectious lung injury after hematopoietic stem cell transplantation: idiopathic pneumonia syndrome. Am. J. Respir. Crit. Care Med. 183, 1262–1279 (2011).

64. Panoskaltsis-Mortari, A. et al. The critical early proinflammatory events associated with idiopathic pneumonia syndrome in irradiated murine allogeneic recipients are due to donor T cell infusion and potentiated by cyclophosphamide. J. Clin. Invest. 100, 1015–1027 (1997).

65. Fukuda, T. et al. Risks and outcomes of idiopathic pneumonia syndrome after

nonmyeloablative and conventional conditioning regimens for allogeneic hematopoietic stem cell transplantation. Blood 102, 2777–2785 (2003).

66. Savic, R. M. et al. Effect of Weight and Maturation on Busulfan Clearance in Infants and Small Children Undergoing Hematopoietic Cell Transplantation. Biol. Blood Marrow

Transplant. 19, 1608–1614 (2013).

67. Nava, T. et al. Incorporation of GSTA1 genetic variations into a population

pharmacokinetic model for IV busulfan in paediatric hematopoietic stem cell transplantation:

GSTA1 -based busulfan population pharmacokinetic model in children. Br. J. Clin.

Pharmacol. 84, 1494–1504 (2018).

68. Uppugunduri, C. R. S. et al. The Association of Combined GSTM1 and CYP2C9

Genotype Status with the Occurrence of Hemorrhagic Cystitis in Pediatric Patients Receiving Myeloablative Conditioning Regimen Prior to Allogeneic Hematopoietic Stem Cell

Transplantation. Front. Pharmacol. 8, (2017).

69. Huezo-Diaz Curtis, P. et al. Association of CTH variant with sinusoidal obstruction syndrome in children receiving intravenous busulfan and cyclophosphamide before hematopoietic stem cell transplantation. Pharmacogenomics J. (2016)

doi:10.1038/tpj.2016.65.

70. Nava, T. et al. GSTA1 Genetic Variants and Conditioning Regimen: Missing Key Factors in Dosing Guidelines of Busulfan in Pediatric Hematopoietic Stem Cell Transplantation. Biol.

Blood Marrow Transplant. (2017) doi:10.1016/j.bbmt.2017.07.022.

71. Choi, B. et al. Population pharmacokinetics and pharmacodynamics of busulfan with GSTA1 polymorphisms in patients undergoing allogeneic hematopoietic stem cell transplantation. Pharmacogenomics 16, 1585–1594 (2015).

72. Pándy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands.

Nucleic Acids Res. 46, D440–D446 (2018).

73. Gurevich, V. & Gurevich, E. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int. J. Mol. Sci. 18, 2519 (2017).

74. Dixon, R. A. F. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75 (1986).

75. Fredriksson, R. The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol.

63, 1256–1272 (2003).

61

76. Nogués, L. et al. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin. Cancer Biol. 48, 78–90 (2018).

77. Weis, W. I. & Kobilka, B. K. The Molecular Basis of G Protein–Coupled Receptor Activation. Annu. Rev. Biochem. 87, 897–919 (2018).

78. Okamoto, Y. & Shikano, S. Differential phosphorylation signals control endocytosis of GPR15. Mol. Biol. Cell mbc–E16 (2017).

79. Hanyaloglu, A. C. Advances in Membrane Trafficking and Endosomal Signaling of G Protein-Coupled Receptors. in International Review of Cell and Molecular Biology vol. 339 93–131 (Elsevier, 2018).

80. Smith, J. S. & Rajagopal, S. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. J. Biol. Chem. 291, 8969–8977 (2016).

81. Nogués, L. et al. G-Protein–Coupled Receptor Kinase 2 as a Potential Modulator of the Hallmarks of Cancer. Mol. Pharmacol. 91, 220–228 (2017).

82. Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. & Wetzker, R. Linkage of G Protein-Coupled Receptors to the MAPK Signaling Pathway Through PI 3-Kinase. Science 275, 394–397 (1997).

83. Console-Bram, L., Brailoiu, E., Brailoiu, G. C., Sharir, H. & Abood, M. E. Activation of GPR18 by cannabinoid compounds: a tale of biased agonism: GPR18 and intracellular calcium, MAPK, β-arrestin. Br. J. Pharmacol. 171, 3908–3917 (2014).

84. Riaz, A., Huang, Y. & Johansson, S. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int. J. Mol. Sci. 17, 215 (2016).

85. Wang, Z. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research. Int. J. Mol. Sci. 17, 95 (2016).

86. Natarajan, K. & Berk, B. C. Crosstalk Coregulation Mechanisms of G Protein-Coupled Receptors and Receptor Tyrosine Kinases. in Transmembrane Signaling Protocols vol. 332 51–78 (Humana Press, 2006).

87. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E.

Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov.

16, 829–842 (2017).

88. Hauser, A. S. et al. Pharmacogenomics of GPCR Drug Targets. Cell 172, 41-54.e19 (2018).

89. Bar-Shavit, R. et al. G Protein-Coupled Receptors in Cancer. Int. J. Mol. Sci. 17, 1320 (2016).

90. Huang, Y., Todd, N. & Thathiah, A. The role of GPCRs in neurodegenerative diseases:

avenues for therapeutic intervention. Curr. Opin. Pharmacol. 32, 96–110 (2017).

91. Thompson, M. D., Hendy, G. N., Percy, M. E., Bichet, D. G. & Cole, D. E. C. G Protein-Coupled Receptor Mutations and Human Genetic Disease. in Pharmacogenomics in Drug Discovery and Development (ed. Yan, Q.) vol. 1175 153–187 (Springer New York, 2014).

62

92. Wang, J., Gareri, C. & Rockman, H. A. G-Protein–Coupled Receptors in Heart Disease.

Circ. Res. 123, 716–735 (2018).

93. Yuan, X. & Xu, Y. Recent Trends and Applications of Molecular Modeling in GPCR–

Ligand Recognition and Structure-Based Drug Design. Int. J. Mol. Sci. 19, 2105 (2018).

94. Wisler, J. W., Rockman, H. A. & Lefkowitz, R. J. Biased G Protein–Coupled Receptor Signaling: Changing the Paradigm of Drug Discovery. Circulation 137, 2315–2317 (2018).

95. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

96. Liauchonak, I. et al. The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome. Int. J. Mol. Sci. 19, 575 (2018).

97. Foster, S. R., Roura, E. & Thomas, W. G. Extrasensory perception: Odorant and taste receptors beyond the nose and mouth. Pharmacol. Ther. 142, 41–61 (2014).

98. Dolgin, E. First GPCR-directed antibody passes approval milestone. Nat. Rev. Drug Discov. 17, 457–459 (2018).

99. Umamaheswaran, S., Dasari, S. K., Yang, P., Lutgendorf, S. K. & Sood, A. K. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev. 37, 203–

211 (2018).

100. Witkamp, R. & Meijerink, J. The endocannabinoid system: an emerging key player in inflammation. Curr. Opin. Clin. Nutr. Metab. Care 17, 130–138 (2014).

101. Albi, E., Alessenko, A. & Grösch, S. Sphingolipids in Inflammation. Mediators Inflamm. 2018, 1–3 (2018).

102. Yost, C. C., Weyrich, A. S. & Zimmerman, G. A. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 92, 692–697 (2010).

103. Chiurchiù, V., Leuti, A. & Maccarrone, M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front. Immunol. 9, 38 (2018).

104. Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

105. Campbell, D. J., Kim, C. H. & Butcher, E. C. Chemokines in the systemic organization of immunity. Immunol. Rev. 195, 58–71 (2003).

106. Charo, I. F. & Ransohoff, R. M. The Many Roles of Chemokines and Chemokine Receptors in Inflammation. N. Engl. J. Med. 354, 610–621 (2006).

107. Kanmogne, G. & Woollard, S. Maraviroc: a review of its use in HIV infection and beyond. Drug Des. Devel. Ther. 5447 (2015) doi:10.2147/DDDT.S90580.

108. Makita, S. & Tobinai, K. Mogamulizumab for the treatment of T-cell lymphoma.

Expert Opin. Biol. Ther. 17, 1145–1153 (2017).

109. Marino, F. & Cosentino, M. Adrenergic modulation of immune cells: an update.

Amino Acids 45, 55–71 (2013).

63

110. Kolmus, K., Tavernier, J. & Gerlo, S. β2-Adrenergic receptors in immunity and inflammation: Stressing NF-κB. Brain. Behav. Immun. 45, 297–310 (2015).

111. Scanzano, A. & Cosentino, M. Adrenergic regulation of innate immunity: a review.

Front. Pharmacol. 6, (2015).

112. Fraser, C. C. G Protein–Coupled Receptor Connectivity to NF-κB in Inflammation and Cancer. Int. Rev. Immunol. 27, 320–350 (2008).

113. Bendall, L. Extracellular molecules in hematopoietic stem cell mobilisation. Int. J.

Hematol. 105, 118–128 (2017).

114. Nagasawa, T. CXCL12/SDF-1 and CXCR4. Front. Immunol. 6, 301 (2015).

115. DiPersio, J. F. et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood blood-2008-08-174946 (2009) doi:10.1182/blood-2008-08-174946.

116. DiPersio, J. F. et al. Phase III Prospective Randomized Double-Blind Placebo-Controlled Trial of Plerixafor Plus Granulocyte Colony-Stimulating Factor Compared With Placebo Plus Granulocyte Colony-Stimulating Factor for Autologous Stem-Cell Mobilization and Transplantation for Patients With Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 27, 4767–

4773 (2009).

117. Golay, H., Jurkovic Mlakar, S., Mlakar, V., Nava, T. & Ansari, M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int. J. Mol. Sci. 20, (2019).

118. Shamseer, L. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647–g7647 (2015).

119. Hartmann, T., Hübel, K., Monsef, I., Engert, A. & Skoetz, N. Additional plerixafor to granulocyte colony-stimulating factors for haematopoietic stem cell mobilisation for

autologous transplantation in people with malignant lymphoma or multiple myeloma.

Cochrane Database Syst. Rev. (2015) doi:10.1002/14651858.CD010615.pub2.

120. Arai, Y. et al. Enhanced Expression of CXCR4 Facilitates C-Kit-Targeted CAR-T Cell Trafficking to Bone Marrow and Enables Donor Stem Cell Engraftment. Biol. Blood Marrow Transplant. 24, S311 (2018).

121. Chen, J. et al. Mobilization as a preparative regimen for hematopoietic stem cell transplantation. Blood 107, 3764–71 (2006).

122. Green, M. M. et al. Plerixafor (a CXCR4 antagonist) following myeloablative allogeneic hematopoietic stem cell transplantation enhances hematopoietic recovery. J Hematol Oncol 9, 71 (2016).

123. Bramer, W. M., Giustini, D., De Jonge, G. B., Holland, L. & Bekhuis, T.

De-duplication of database search results for systematic reviews in EndNote. J. Med. Libr. Assoc.

104, (2016).

Documents relatifs