• Aucun résultat trouvé

Because better memory for the target than for the distractor color was 805

observed even when the search task was not executed, we may rule out that refreshing 806

accounted for the difference. Refreshing was not possible without search display. In 807

addition, refreshing was in principle possible for both the target and the distractor, because 808

both were always present in the search display.

809

Acknowledgments 810

CW was supported by the grant “Cardinal Mechanisms of Perception” No. SFB TRR 811

135 from the Deutsche Forschungsgemeinschaft. DK was supported by grant No.

812

100019_182146 from the Swiss National Foundation. We wish to thank Greta Mikneviciute 813

for running the experiments.

814

References 815

Ansorge, U., & Becker, S. I. (2014). Contingent capture in cueing: the role of color search templates 816

and cue-target color relations. Psychological Research, 78(2), 209-221. doi:10.1007/s00426-817

013-0497-5 818

Ansorge, U., & Horstmann, G. (2007). Preemptive control of attentional capture by colour: Evidence 819

from trial-by-trial analyses and orderings of onsets of capture effects in reaction time 820

distributions. Quarterly Journal of Experimental Psychology, 60(7), 952-975.

821

doi:10.1080/17470210600822795 822

Ansorge, U., Horstmann, G., & Carbone, E. (2005). Top-down contingent capture by color: evidence 823

from RT distribution analyses in a manual choice reaction task. Acta Psychologica, 120(3), 824

243-266. doi:10.1016/j.actpsy.2005.04.004 825

--36-- Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: configuring attention to 826

ignore task-irrelevant features. Journal of Experimental Psychology: Human, Perception, and 827

Performance, 38(3), 580-584. doi:Doi 10.1037/A0027885 828

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a 829

failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443.

830

doi:10.1016/j.tics.2012.06.010 831

Barras, C., & Kerzel, D. (2016). Nogo stimuli do not receive more attentional suppression or response 832

inhibition than neutral stimuli: evidence from the N2pc, PD and N2 components in a spatial 833

cueing paradigm. Frontiers in Psychology, 7:630. doi:10.3389/fpsyg.2016.00630 834

Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by 835

allocation of a shared resource. Journal of Vision, 9(10), 7 1-11. doi:10.1167/9.10.7 836

Bays, P. M., & Husain, M. (2008). Dynamic Shifts of Limited Working Memory Resources in Human 837

Vision. Science, 321(5890), 851-854. doi:10.1126/science.1158023 838

Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous Control of Attention by Multiple 839

Working Memory Representations. Psychological Science, 23(8), 887-898.

840

doi:doi:10.1177/0956797612439068 841

Biderman, D., Biderman, N., Zivony, A., & Lamy, D. (2017). Contingent capture is weakened in search 842

for multiple features from different dimensions. Journal of Experimental Psychology: Human 843

Perception and Performance, 43(12), 1974-1992. doi:10.1037/xhp0000422 844

Büsel, C., Pomper, U., & Ansorge, U. (2018). Capture of attention by target-similar cues during dual-845

color search reflects reactive control among top-down selected attentional control settings.

846

Psychonomic Bulletin Review. doi:10.3758/s13423-018-1543-5 847

Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional Templates in Visual 848

Working Memory. The Journal of Neuroscience, 31(25), 9315-9322.

849

doi:10.1523/jneurosci.1097-11.2011 850

Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage 851

capacity. Behavioral and Brain Sciences, 24(1), 87-114; discussion 114-185.

852

doi:10.1017/S0140525x01003922 853

D'Zmura, M. (1991). Color in visual search. Vision Research, 31(6), 951-966. doi:10.1016/0042-854

6989(91)90203-H 855

Daoutis, C. A., Pilling, M., & Davies, I. R. L. (2006). Categorical effects in visual search for colour.

856

Visual Cognition, 14(2), 217-240. doi:10.1080/13506280600158670 857

Downing, P. E., & Dodds, C. M. (2004). Competition in visual working memory for control of search.

858

Visual Cognition, 11(6), 689-703. doi:10.1080/13506280344000446 859

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 860

96, 433-458. doi:10.1037/0033-295x.96.3.433 861

Fairchild, M. D. (2005). Colour appearance models. Hoboken, NJ: Wiley.

862

Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant 863

features: Visual working memory biases attention in an object-based manner. Cognition, 172, 864

37-45. doi:10.1016/j.cognition.2017.12.002 865

Folk, C. L., & Anderson, B. A. (2010). Target-uncertainty effects in attentional capture: Color-singleton 866

set or multiple attentional control settings? Psychonomic Bulletin & Review, 17(3), 421-426.

867

doi:10.3758/pbr.17.3.421 868

Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons:

869

Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human 870

Perception and Performance, 24(3), 847-858. doi:10.1037/0096-1523.24.3.847 871

Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on 872

attentional control settings. Journal of Experimental Psychology: Human Perception and 873

Performance, 18(4), 1030-1044. doi:10.1037/0096-1523.18.4.1030 874

Gaspelin, N., & Luck, S. J. (2018). The Role of Inhibition in Avoiding Distraction by Salient Stimuli.

875

Trends in Cognitive Sciences, 22(1), 79-92. doi:10.1016/j.tics.2017.11.001 876

--37-- Grubert, A., & Eimer, M. (2016). All Set, Indeed! N2pc Components Reveal Simultaneous Attentional 877

Control Settings for Multiple Target Colors. Journal of Experimental Psychology-Human 878

Perception and Performance, 42(8), 1215-1230. doi:10.1037/xhp0000221 879

Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are 880

maintained in visual working memory. Journal of Experimental Psychology: Human 881

Perception and Performance, 42(7), 911-917. doi:10.1037/xhp0000230 882

Hollingworth, A., & Hwang, S. (2013). The relationship between visual working memory and 883

attention: retention of precise colour information in the absence of effects on perceptual 884

selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628).

885

doi:10.1098/rstb.2013.0061 886

Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment 887

of attention and the eyes during visual search. Journal of Experimental Psychology: Human 888

Perception and Performance, 32(2), 423-442. doi:10.1037/0096-1523.32.2.423 889

Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional 890

control settings for multiple target colors. Journal of Experimental Psychology: Human 891

Perception and Performance, 38(3), 758-775. doi:10.1037/a0026578 892

Kim, S., & Cho, Y. S. (2016). Memory-based attentional capture by colour and shape contents in visual 893

working memory. Visual Cognition, 24(1), 51-62. doi:10.1080/13506285.2016.1184734 894

Krummenacher, J., Müller, H. J., & Heller, D. (2002). Visual search for dimensionally redundant pop-895

out targets: parallel-coactive processing of dimensions is location specific. Journal of 896

Experimental Psychology: Human Perception and Performance, 28(6), 1303-1322.

897

doi:10.1037//0096-1523.28.6.1303 898

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical 899

primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.

900

doi:10.3389/fpsyg.2013.00863 901

Lamy, D., Leber, A. B., & Egeth, H. E. (2012). Selective attention. In A. F. Healy & R. W. Proctor (Eds.), 902

Comprehensive handbook of psychology (Vol. 4, pp. 265-294). New York: Wiley.

903

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and 904

conjunctions. Nature, 390(6657), 279-281. doi:10.1038/36846 905

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and 906

neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400.

907

doi:10.1016/j.tics.2013.06.006 908

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature 909

Neuroscience, 17(3), 347-356. doi:10.1038/nn.3655 910

Moore, K. S., & Weissman, D. H. (2010). Involuntary transfer of a top-down attentional set into the 911

focus of attention: Evidence from a contingent attentional capture paradigm. Attention, 912

Perception, & Psychophysics, 72(6), 1495-1509. doi:10.3758/app.72.6.1495 913

Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual-Search for Singleton Feature Targets within and 914

across Feature Dimensions. Perception & Psychophysics, 57(1), 1-17.

915

doi:10.3758/Bf03211845 916

Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, 917

display type, and search type. Journal of Experimental Psychology: Human Perception and 918

Performance, 35(5), 1275-1291. doi:10.1037/a0013896 919

Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture:

920

Visual working memory content affects visual attention. Journal of Experimental Psychology:

921

Human Perception and Performance, 32(5), 1243-1265. doi:10.1037/0096-1523.32.5.1243 922

Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working 923

memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 924

327-334. doi:10.1016/j.tics.2011.05.004 925

Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of Free Choice Reveals the Cost of Having to 926

Search for More Than One Object. Psychological Science, 28(8), 1137-1147.

927

doi:10.1177/0956797617705667 928

--38-- Rajsic, J., Ouslis, N. E., Wilson, D. E., & Pratt, J. (2017). Looking sharp: Becoming a search template 929

boosts precision and stability in visual working memory. Attention, Perception, &

930

Psychophysics, 79(6), 1643-1651. doi:10.3758/s13414-017-1342-5 931

Roper, Z. J. J., & Vecera, S. P. (2012). Searching for two things at once: Establishment of multiple 932

attentional control settings on a trial-by-trial basis. Psychonomic Bulletin & Review, 19(6), 933

1114-1121. doi:10.3758/s13423-012-0297-8 934

Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance 935

of attention from working memory. Journal of Experimental Psychology: Human Perception 936

and Performance, 31(2), 248-261. doi:10.1037/0096-1523.31.2.248 937

Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years 938

of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839-1860.

939

doi:10.3758/s13414-016-1108-5 940

Sternberg, S. (1969). Memory-scanning: mental processes revealed by reaction-time experiments.

941

American Scientist, 57(4), 421-457.

942

Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory 943

with the MemToolbox. Journal of Vision, 13(10)(9), 1-8. doi:10.1167/13.10.9.

944

Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 945

184-193. doi:10.3758/Bf03212219 946

Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in simple processing systems. In 947

J. N. J. Castellan & F. Restle (Eds.), Cognitive theory (Vol. 3, pp. 199–239). New York:

948

Lawrence Erlbaum Associates.

949

van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional 950

template: Can multiple items within visual working memory guide attention? Journal of 951

Experimental Psychology: Human Perception and Performance, 40(4), 1450-1464.

952

doi:10.1037/a0036229 953

Vickery, T. J., King, L. W., & Jiang, Y. (2005). Setting up the target template in visual search. J Vis, 5(1), 954

81-92. doi:10.1167/5.1.8 955

Witzel, C., & Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 956

13(7). doi:10.1167/13.7.1 957

Witzel, C., & Gegenfurtner, K. R. (2015). Categorical facilitation with equally discriminable colors.

958

Journal of Vision, 15(8). doi:10.1167/15.8.22 959

Witzel, C., & Gegenfurtner, K. R. (2016). Categorical Perception for Red and Brown. Journal of 960

Experimental Psychology-Human Perception and Performance, 42(4), 540-570.

961

doi:10.1037/xhp0000154 962

Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your 963

mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411-1426.

964

doi:10.1016/j.visres.2003.11.024 965

Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically 966

influence attentional selection during visual search? Journal of Experimental Psychology:

967

Human Perception and Performance, 33(2), 363-377. doi:10.1037/0096-1523.33.2.363 968

Worschech, F., & Ansorge, U. (2012). Top-down search for color prevents voluntary directing of 969

attention to informative singleton cues. Experimental Psychology, 59(3), 153-162.

970

doi:10.1027/1618-3169/a000138 971

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory.

972

Nature, 453(7192), 233-235.

973 974 975

--39-- Table 1. Differences between the four groups in Experiment 2.

976

group label feedback priority search task

equal priority pooled equal always with/without search pooled equal 50% of trials specific feedback specific equal always priority distractor specific distractor always 977

978 979

--40-- 980

981

Figure 1. Illustration of experimental stimuli (not drawn to scale). Panel A illustrates CIELAB 982

color space. Chroma increases from the center to the periphery of the disk. The azimuth 983

corresponds to the hue. Arrows illustrate hue differences of 120°. Panel B shows the 984

sequence of events in Experiment 1, where observers searched for one or two colors. With 985

--41-- only one target, the central letter indicated the location of the target color (C for central disk 986

and P for peripheral ring). Panel C shows the dual task paradigm in Experiment 2. Observers 987

memorized the two colors shown in the memory display. One was the target color and the 988

other was the distractor color in the upcoming feature search task. For half of the 989

participants, the central disk indicated the target color (as shown in panel C). For the other 990

half, it was the peripheral disk. Panel D shows singleton search in Experiment 3 where the 991

designated color from the memory display had to be retained while participants searched 992

for a color singleton. The color wheel in Experiment 2 (panel C) surrounded a disk and a ring 993

because observers were asked to recall the color of both the disk and the ring 994

(corresponding to target and distractor color in the memory display). In Experiment 3 (panel 995

D), the color wheel surrounded a single disk because only a single color was recalled. Note 996

that placeholders in the experiments were composed of two unfilled circles. The dark gray 997

rings in the figures were used for clarity.

998 999

--42-- 1000

1001 1002

Figure 2. Results from Experiment 1. Mean corrected reaction times (RTs) are shown as a 1003

function of the number of memorized search targets, cue validity, and match between the 1004

cue and memorized target color. Error bars show the standard error of the mean.

1005 1006

--43-- 1007

1008 1009

Figure 3. Results from Experiment 2. The four columns show data from the four 1010

experimental groups. The upper row shows the corrected reaction times (RTs, in ms) as a 1011

function of cue validity and cue color. The cue color matched either the target or the 1012

distractor color. The lower column shows the standard deviation (SD) of the distribution of 1013

the memory error for the target and the distractor color (in °). Error bars represent the 1014

standard error of the mean.

1015 1016

--44-- 1017

1018

Figure 4. Results from Experiment 3. Mean corrected RTs are shown as a function of cue 1019

validity and the match between the memorized color and the cue color.

1020 1021

--45-- Supplementary Table 1. Mean reaction times (RT, in ms) and percentage of errors (PE) in 1022

Experiment 1 as a function of number of memorized search targets, match between cue and 1023

memorized target color, and cue validity. The difference between invalid and valid 1024

conditions is indicated as cueing effect (CE).

1025

# colors

cue

match valid RT CE(RT) PE CE(PE)

1 yes yes 444 73 4.7 3.0

no 516 7.7

no yes 501 -17 7.9 -1.0

no 484 6.9

2 yes yes 498 37 8.4 9.5

no 536 17.9

no yes 532 -9 17.7 -0.2

no 524 17.5

1026 1027

--46-- Supplementary Table 2. Mean reaction times (RT, in ms) and percentage of errors (PE) in 1028

Experiment 2 as a function of feedback group, cue color (target-matching, distractor-1029

matching), and cue validity. The difference between invalid and valid conditions is indicated 1030

as cueing effect (CE).

1031

feedback

cue

match valid RT CE(RT) PE CE(PE) pooled target yes 527 45 7.6 4.1

no 572 11.7

distractor yes 552 -14 8.3 -0.7

no 538 7.6

specific target yes 480 68 5.2 1.1

no 548 6.3

distractor yes 533 -13 5.6 0.3

no 520 5.9

1032 1033

--47-- Supplementary Table 3. Mean reaction times (RT, in ms) and percentage of errors (PE) in 1034

Experiment 3 as a function of match between cue and memorized color, and cue validity.

1035

The difference between invalid and valid conditions is indicated as cueing effect (CE).

1036

cue match valid RT CE(RT) PE CE(PE)

yes yes 479 62 2.0 5.7

no 541 7.7

no yes 475 53 3.1 2.0

no 529 5.1

1037 1038 1039

--48-- Supplementary Analysis

1040

We provide supplementary analysis of the guess rate and swap rate parameters 1041

derived from the model of Bays et al. (2009). The results of these analyses are consistent 1042

with the conclusions from the analysis of standard deviation reported in the main text. Most 1043

importantly, we found both guess rates and swap rates to be higher for the distractor than 1044

for the target in Experiment 2.

1045

Experiment 2 1046

We conducted a 4 (group: “equal priority”, “with/without search”, “specific 1047

feedback”, “priority distractor”) x 2 (recalled stimulus: target, distractor) x 2 (cue color:

1048

target matching, distractor matching) mixed ANOVA on individual guess rates. For the 1049

“with/without search” group, only color settings from trials with search task were included 1050

in the ANOVA. The guess rate was lower for the target than for the distractor color (.033 vs 1051

.078), F(1, 46) = 18.31, p < .001, ηp2 = .29, indicating that observers memorized targets better 1052

than distractors. The effect of cue color approached significance, F(1, 46) = 3.10, p = .085, ηp2

1053

= .06, showing that the guess rated tended to be higher with same than with different cues 1054

(0.063 vs. 0.047). None of the other effects reached significance, ps > .571.

1055

We repeated the same ANOVA on individual swap rates. The probability of swapping 1056

was smaller for targets than for distractors (.018 vs. .068), F(1, 46) = 26.92, p < .001, ηp2 = 1057

.369. The interaction of cue color and experiment, F(3, 46) = 3.71, p = .018, ηp2 = .195, 1058

showed that swap rate decreased when the cue color was the same as the target color in the 1059

"with/without search" and "priority distractor" groups (decrease of .022 and .005, 1060

respectively), but increased in the "equal priority" and "specific feedback" groups (increase 1061

of .012 and .006, respectively). The interaction of recalled stimulus and cue color 1062

approached significance, F(3, 46) = 3.02, p = .089, ηp2 = .06, showing that matching cue 1063

--49-- colors decreased the swap rates for the target (.016 for matching and .021 for non-matching 1064

cue colors), whereas the opposite was the case for the distractor (.072 for matching and .64 1065

for non-matching cue colors).

1066

Further, we evaluated the effect of completing the search task in the group 1067

“with/without search”. We conducted a 2 (recalled stimulus: target, distractor) × 2 (search 1068

task: present, absent) on the guess rate, but no significant main effect or interaction was 1069

observed, ps > .248. We repeated this analysis on swap rates. Swap rates were lower for the 1070

target than for the distractor (.017 vs .076), F(1, 12) = 8.23, p = .014, ηp2 = .41. The 1071

interaction of recalled stimulus and search task, F(1, 12) = 5.44, p = .038, ηp2 = .31, showed 1072

that swap rates increased for the target when the search task was absent (.014 vs .020), 1073

whereas it decreased for the distractor (.091 vs .061).

1074

Experiment 3 1075

We compared the guess and the swap rate in the color adjustment task for memory-1076

matching and non-matching cue colors. The guess rate was smaller when the cues matched 1077

the memorized color than when they were non-matching (.040 vs .068), t(16) = 2.33, p = 1078

.033, Cohen’s d = 0.56, whereas the swap rate did not differ (.002 in both conditions), p = 1079

.676.

1080

Documents relatifs