• Aucun résultat trouvé

Authenticité des produits laitiers

Par rapport à d’autres aliments, le lait est remarquablement stable à la chaleur, ce qui permet l’élaboration d’une gamme des produits stérilisés thermiquement, néanmoins ces traitements induisent des réactions qui ont une influence sur la composition et les propriétés nutritionnelles des produits finis (Anema y McKenna, 1996). Une des plus importantes réactions est la dénaturation des protéines, dont celles du sérum, les plus thermo sensibles. Le degré de dénaturation dépend de la protéine, du traitement thermique et du pH du milieu (Anema y McKenna, 1996).

Dans la fabrication des fromages, principalement pendant l’affinage, des réactions biochimiques comme la protéolyse, la glycolyse et la lipolyse, provoquent des changements de composition et la formation de composés d’arômes qui interviennent dans les propriétés organoleptiques. Pendant la protéolyse, l’hydrolyse enzymatique des caséines produit une gramme de composés, de tailles moléculaires différentes, allant de gros peptides jusqu’au acides aminés libres (Fox et McSweeney, 1996; McSweeney et Sousa, 2000; Sousa et al., 2001). Les cinétiques d’hydrolyse et les profils des composés générés sont caractéristiques de chaque type de fromage (Hasouna et al., 1996; Gagnaire et al., 2001). Pendant la glycolyse, le lactose est transformé en lactate, métabolisé à son tour en d’autres composés comme des acides organiques ainsi qu’en CO2 et H2O (McSweeney y Sousa, 2000). Pour les fromages affinés, comme le Camembert, ensemencés avec des flores spécifiques (Kluyveromyces lactis, Geotrichum

des modifications en la solubilité des caséines, et affecte les croissances microbiennes et les activités enzymatiques (McSweeney, 2004).

Les triglycérides sont hydrolysés en mono- et di-glycérides et en acides gras libres (AGL) (McSweeney et Sousa, 2000; Collins et al., 2003). Même si ce phénomène n’a pas été signalé comme un index significatif de maturation, il a une forte influence sur le développement de la saveur et de l’arôme du fromage (McSsweeney et Sousa, 2000; Collins et al., 2003; Mallatou et

al., 2003).

La composition du lait et des produits laitiers est évaluée par des méthodes de référence (Nom-155-Scfi-2003, 2003) qui visent à déterminer la concentration des principaux constituants des matrices.

Ainsi, les sucres, acides organiques, matières azotées, matières grasses ainsi que les phénomènes de protéolyse, glycolyse et de lipolyse sont évalués généralement par des méthodes physico-chimiques (Ardö et Polychroniadou, 1999). La protéolyse est évaluée par la mesure de différentes fractions azotées (méthode Kejdhal) obtenues par précipitations sélectives (Christensen et al., 1991). Le degré de lipolyse est évalué en mesurant l’acidité de la fraction lipidique (Evers, 2003) et la glycolyse en quantifiant le lactose résiduel et le lactate produit (Leclercq-Perlat et al., 2004). Ces méthodes ont été décrites pour différents fromages comme le Camembert (Schlesser et al., 1992; Engel et al., 2001; Leclercq-Perlat et al., 2004), le Ragusano (Fallico et al., 2004) et le Prato (Gorostiza et al., 2004).

Pour obtenir une caractérisation plus détaillée de la composition (caséines, peptides, acides aminés, matières grasses) du lait et des fromages, des techniques séparatives, telles que l’électrophorèse, la chromatographie liquide haute performance (HPLC) et la chromatographie en phase gazeuse (CG) (Acuña et al., 2001; Collins et al., 2003), sont mises en œuvre. Le profil en acides gras du lait a été utilisé pour différencier des laits produits à des altitudes différentes. Ainsi, Collomb et al. (2002) ont observé des différences significatives dans les profils des acides gras des laits produits au niveau de la mer ou en montage. Par ailleurs, Destaillats et al. (sous presse) ont décrit l’utilisation du profil des triglycérides pour la détection de l’adultération de la matière grasse du lait par des huiles végétales partiellement hydrogénées. Pour déterminer l’origine géographique de fromages de type Emmental, différents profils de composition, comme

celui des acides gras libres (AGL), des triglycérides (Pillonel et al., 2002), mais aussi des profils des composés volatiles (Pillonel et al., 2003a) ont été utilisés.

Tous ces résultats sont obtenus à partir de la mise en œuvre de plusieurs méthodes analytiques et/ou à partir de méthodes lourdes. Ces mesures multiples prennent du temps et ne permettent pas d’accéder rapidement à la composition de la matrice dont la connaissance permettrait, par exemple, de vérifier l’identité du produit, sa qualité, son origine ou encore son niveau de transformation lors d’un affinage.

La spectroscopie infrarouge (IRTF) est une méthode directe, fiable et rapide qui permet d’obtenir des informations spécifiques sur différents paramètres simultanément, principalement dans la région spectrale 3000 cm-1 - 400 cm-1 puisque les bandes d’absorption y sont associées aux vibrations des groupes fonctionnels des molécules (Karoui et al., 2005b). Cette technique est utilisée pour quantifier les protéines, les matières grasses et le lactose dans le lait et les produits laitiers (Chen et al., 1998; Grappin et al., 2000; Wust et Rudzik, 2003). La réponse des protéines entre 1700 cm-1 et 1500 cm-1, associée à la liaison peptidique (CO-NH), est très sensible à la conformation adoptée par ces molécules. Pour les matières grasses, les régions d’absorption sont bien connues, chaînes acyle à 3000 cm-1 - 2800 cm-1, celle associée avec les esters à 1800 cm-1 - 1700 cm-1, et différentes bandes dans la zone 1243 cm-1 -1110 cm-1 associées avec l’élongation des liaisons C(O)-O et C-O (Riaublanc et al., 2000). Le spectre du lactose fait apparaître des bandes dues à l’élongation de la liaison C-O et la déformation du O-H dans la région 1112-1050 cm-1 (Grappin et al., 2000). La réponse du lactate à 1575 cm-1 est caractéristique de l’ion carboxylate (Picque et al., 1993; Mazerolles et al., 2001).

Étant donné qu’en spectroscopie infrarouge, les liaisons chimiques présentes dans une molécule produisent des bandes spécifiques, il doit être possible de l’utiliser pour déterminer la composition de produits comme le lait et des changements de composition, comme ceux intervenant lors de l’élaboration des produits laitiers, par exemple l’affinage des fromages.

Pour évaluer l’affinage du fromage Cheddar, Chen et al. (1998) ont corrélé les teneurs en matières grasses et protéines mesurées par des méthodes classiques avec les aires intégrées des pics d’absorbance des spectres infra rouge dans les régions 1765 cm-1 - 1730 cm-1 (matière grasse), 1690 cm-1 - 1620 cm-1 (Amide I, protéine) et 1570 cm-1 - 1535 cm-1 (Amide II, protéine).

Ils concluent que la spectroscopie IR peut être une technique appropriée pour caractériser les fromages pendant l’affinage. Guerzoni et al. (1999) ont étudié les effets de différents traitements du lait sur l’affinage de fromage de chèvre. La spectroscopie infrarouge a permis de montrer que les cinétiques d’évolution des peptides solubles (1700 cm-1 à 1330 cm-1), des acides grasses libres (1740 cm-1, 1160 cm-1 et 1100 cm-1), de l’acide lactique (1740 cm-1) et des sucres (1300 cm-1 - 1000 cm-1) étaient différentes selon le lait mis en oeuvre. Vannini et al. (2001) ont évalué la pertinence de la spectroscopie infrarouge pour le suivi de l’activité protéolytique des différentes souches de Yarrowia lipolytica en mesurant les changements spectraux intervenant dans les régions Amide I et Amide II. Plus récemment, Lanciotti et al. (2005) ont mesuré le potentiel de quatre souches de Y. lipolytica comme levains d’affinage. L’activité protéolytique de ces souches a été évaluée dans les zones spectrales Amide et lipidique. Récemment, Rodriguez-Saona et al. (2006) ont montré le potentiel de la spectroscopie infrarouge, couplée avec de la réflexion totale atténue (ATR-IRTF), à fournir de bonnes estimations de l’humidité, des matières grasses et des protéines de fromages suisses.

Les méthodes statistiques multi variées ont pris une grande importance pour la discrimination de produits car elles permettent d'extraire les informations pertinentes dans de grandes bases de données. Van de Voort et al. (1992) ont développé un modèle de régression par les moindres carrés partiels (PLS) pour quantifier l’extrait sec, la matière grasse, les protéines et le lactose à partir des spectres infrarouge du lait. En utilisant la régression PLS sur les composantes principales (RPC) des spectres moyen infrarouge de lait, Luinge et al. (1993) ont déterminé les teneurs en matière grasse, en protéine et en lactose. En associant les valeurs du pH, de d’activité de l’eau (aw), de la matière sèche et les teneurs des fractions azotées dans un modèle PLS, García Ruiz et al. (1998) ont prédit le temps d’affinage des fromages Manchego affinés pendant 60 à 150 jours avec une erreur moyenne de 10,3 jours. En utilisant l’ACP, Hynes et al. (2003) ont discriminé des fromages Reggianito Argentino à différents degrés d’affinage grâce aux profils peptidiques de la fraction d’azote soluble dans l’eau. Pillonel et al. (2003a) ont discriminé des fromages Emmental en fonction de la région de production en utilisant les concentrations en certains acides aminés libres (asparagine, glycine, lysine, phénylalanine et proline), ainsi que deux fractions caséiques. Poveda et al. (2004b) ont montré par PLS, que le pH, l’activité de l’eau (aw), et la matière sèche sont les variables les plus importantes pour prédire le temps de maturation de fromages Manchego. Les meilleures résultats pour différentier l’âge de

fromage Ragusano ont été obtenus par une combinaison des données analytiques de profils des peptides et d’acides aminés avec une régression PLS (Fallico et al., 2004)

Dufour et al. (2000) ont décrit l’utilisation de l’ACP des spectres infrarouge des fromages (région 3000-2780 cm-1) pour évaluer les modifications d’état des triglycérides. Mazerolles et al. (2001), en utilisant la même méthode statistique, ont identifié des bandes spécifiques dans la zone Amide I et Amide II qui ont permis de discriminer entre différents états de maturation des fromages. Karoui et al. (2003) ont publié une synthèse des différentes méthodes chimiométriques qui peuvent être utilisées pour analyser des données spectroscopiques et les corréler avec les informations chimiques, physiques, avec d’autres informations spectrales ou pour extraire des informations sur la structure moléculaire des protéines et matières grasses. Karoui et al. (2006d) ont appliqué l’ACP aux spectres MIR (3000-900 cm-1) et VIS-NIR (315-1700 nm) des fromages à pâte molle pour discriminer entre les procédés d’élaboration et les zones d’échantillonnage. Coker et al. (2005) concluent, de leur étude sur l’évaluation de la maturité des fromages, qu’il n’existe pas de combinaison pré définie entre méthodes analytiques et statistiques qui puisse être recommandée pour chaque situation.

Skeie et al. (2006) ont développé des modèles PLS pour prédire la concentration de quelques acides aminés à partir des spectres NIR des fromages norvégiens. La teneur en azote non protéique (NNP) et en azote soluble dans l’eau (WSN) ainsi que le pH ont été prédits avec une bonne précision à partir des spectres moyen infrarouge (MIR) d’Emmental européens produits en été (Karoui et al., 2006b) et en hiver (Karoui et al., 2006c). Les teneurs en matière grasse et azote total (NT) ont été estimées avec une précision plus faible, mais les résultats ont été améliorés en utilisant les spectres PIR (Karoui et al., 2006a).

DEUXIÈME SECTION. Matériel et Méthodes

Documents relatifs