• Aucun résultat trouvé

Les approches d’adaptation de domaine sont intéressantes dans le cas d’un historique pauvre (en diversité) ou subissant de très fortes distorsions

Elles représentent également une bonne alternative pour des situations de changements de capteurs.

En effet, nous avons écarté cette problématique au profit d’une exploitation continue d’un seul capteur,

néanmoins cette situation se pose dès que le satellite arrive en fin de vie, ou que l’on cherche à traiter des

images d’archives.

En effet, les utilisateurs optent de plus en plus pour la classification d’images passées afin d’étudier

l’évo-lution de l’OCSsur le long terme. Ces problématiques vont demander la mise en correspondance entre des

données d’anciens et de récents satellites. Les approches d’adaptation de domaine et de transfert

d’appren-tissage constituent une des meilleures alternatives potentielles à ces problématiques.

Les systèmes de fusion de classifieurs représentent une grande part de ces travaux de thèse. Néanmoins,

nous avons choisi d’interrompre la prospection de certaines méthodes, tant la diversité des configurations

possibles est vaste. En effet, sur le principe des votes majoritaires pondérés, le choix de la pondération à

lui seul regroupe de nombreuses alternatives. Nous pouvons par exemple, ajouter une pondération par le

FScore par classe, à l’image de la fusion Dempster-Shafer. Un autre exemple serait d’exploiter une mesure

de similarité entre les domaines Source et Cible, qui devient alors une pondération de la décision de chaque

classifieur.

L’utilisation de l’inférence bayésienne ouvre la porte à toutes ces possibilités. En effet, toutes les

informa-tions pouvant être traduites sous formes de probabilités devient un facteur potentiellement exploitable.

Enfin, de nombreuses pistes d’améliorations concernent laMT. En effet, l’utilisation de contraintes plus

fortes, associées à la capacité d’appréhender des systèmes complexes comme la rotation des cultures

per-mettraient d’améliorer l’approche de mise à jour de la carte. Ainsi, cela rendrait alors la production d’une

première version de la carte du millésime dès les premiers mois de l’année courante.

Dans un contexte plus général, les travaux de thèse bénéficieraient des améliorations des méthodes de

stockage et de manipulation de données. En effet, de telles innovations permettraient de conserver plus

d’informations dans l’historique, et donc une amélioration des performances.

Bibliographie

[Alaibakhsh et al., 2015] Alaibakhsh, M., Emelyanova, I., Barron, O., Mohyeddin, A., and Khiadani, M.

(2015). Multivariate detection and attribution of land-cover changes in the central pilbara, western

aus-tralia. International Journal of Remote Sensing, 36(10) :2599–2621.

[Alajlan et al., 2014] Alajlan, N., Pasolli, E., Melgani, F., and Franzoso, A. (2014). Large-scale image

clas-sification using active learning. IEEE Geoscience and Remote Sensing Letters, 11(1) :259–263.

[Argyriou et al., 2007] Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-task feature learning. In

Advances in neural information processing systems, pages 41–48.

[Bahirat et al., 2012] Bahirat, K., Bovolo, F., Bruzzone, L., and Chaudhuri, S. (2012). A novel domain

adaptation bayesian classifier for updating land-cover maps with class differences in source and target

domains. IEEE Transactions on Geoscience and Remote Sensing, 50(7) :2810–2826.

[Benamou and Brenier, 2000] Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics

solution to the monge-kantorovich mass transfer problem. Numerische Mathematik, 84(3) :375–393.

[Benzecri, 1977] Benzecri, J.-P. (1977). Analyse discriminante et analyse factorielle. Cahiers de l’analyse des

données, 2(4) :369–406.

[Biggio et al., 2007] Biggio, B., Fumera, G., and Roli, F. (2007). Bayesian analysis of linear combiners. In

International Workshop on Multiple Classifier Systems, pages 292–301. Springer.

[Bonissone et al., 2010] Bonissone, P., Cadenas, J. M., Garrido, M. C., and Díaz-Valladares, R. A. (2010). A

fuzzy random forest. International Journal of Approximate Reasoning, 51(7) :729–747.

[Bradski, 2000] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1) :5–32.

[Brooks et al., 2014] Brooks, E. B., Wynne, R. H., Thomas, V. A., Blinn, C. E., and Coulston, J. W. (2014).

On-the-fly massively multitemporal change detection using statistical quality control charts and landsat

data. IEEE Transactions on Geoscience and Remote Sensing, 52(6) :3316–3332.

[Bruzzone et al., 2006] Bruzzone, L., Chi, M., and Marconcini, M. (2006). A novel transductive svm for

semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote

Sensing, 44(11) :3363–3373.

[Bruzzone and Cossu, 2002] Bruzzone, L. and Cossu, R. (2002). A multiple-cascade-classifier system for a

robust and partially unsupervised updating of land-cover maps. Geoscience and Remote Sensing, IEEE

Transactions on, 40(9) :1984–1996.

[Bruzzone et al., 2004] Bruzzone, L., Cossu, R., and Vernazza, G. (2004). Detection of land-cover transitions

by combining multidate classifiers. Pattern Recognition Letters, 25(13) :1491–1500.

[Bruzzone and Marconcini, 2009] Bruzzone, L. and Marconcini, M. (2009). Toward the automatic

upda-ting of land-cover maps by a domain-adaptation svm classifier and a circular validation strategy. IEEE

Transactions on Geoscience and Remote Sensing, 47(4) :1108–1122.

[Bruzzone and Persello, 2009] Bruzzone, L. and Persello, C. (2009). A novel approach to the selection of

spatially invariant features for the classification of hyperspectral images with improved generalization

capability. IEEE Transactions on Geoscience and Remote Sensing, 47(9) :3180–3191.

[Bruzzone and Prieto, 2001] Bruzzone, L. and Prieto, D. (2001). Unsupervised retraining of a maximum

like-lihood classifier for the analysis of multitemporal remote sensing images.IEEE Transactions on Geoscience

and Remote Sensing, 39(2) :456–460.

[Bruzzone and Serpico, 1997] Bruzzone, L. and Serpico, S. (1997). An iterative technique for the detection

of land-cover transitions in multitemporal remote-sensing images. IEEE Transactions on Geoscience and

Remote Sensing, 35(4) :858–867.

[Card, 1982] Card, D. (1982). Using known map category marginal frequencies to improve estimates of

thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48(3) :431–439.

[Castellazzi et al., 2008] Castellazzi, M., Wood, G., Burgess, P. J., Morris, J., Conrad, K., and Perry, J.

(2008). A systematic representation of crop rotations. Agricultural Systems, 97(1-2) :26–33.

[Charlet et al., 2004] Charlet, J., Bachimont, B., and Troncy, R. (2004). Ontologies pour le web sémantique.

Revue I3, numéro Hors Série «Web sémantique, pages 43–63.

[Chen et al., 2012a] Chen, X., Chen, J., Shi, Y., and Yamaguchi, Y. (2012a). An automated approach for

updating land cover maps based on integrated change detection and classification methods.ISPRS Journal

of Photogrammetry and Remote Sensing, 71(nil) :86–95.

[Chen et al., 2012b] Chen, X., Vogelmann, J. E., Chander, G., Ji, L., Tolk, B., Huang, C., and Rollins, M.

(2012b). Cross-sensor comparisons between landsat 5 tm and irs-p6 awifs and disturbance detection using

integrated landsat and awifs time-series images. International Journal of Remote Sensing, 34(7) :2432–

2453.

[Chi and Bruzzone, 2007] Chi, M. and Bruzzone, L. (2007). Semisupervised classification of

hyperspec-tral images by SVMS optimized in the primal. IEEE Transactions on Geoscience and Remote Sensing,

45(6) :1870–1880.

[Claverie et al., 2012] Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais-Sicre, C.,

Dejoux, J.-F., Huc, M., Keravec, P., Béziat, P., Fieuzal, R., Ceschia, E., and Dedieu, G. (2012). Maize

and sunflower biomass estimation in southwest france using high spatial and temporal resolution remote

sensing data. Remote Sensing of Environment, 124(nil) :844–857.

[Clemen, 1989] Clemen, R. T. (1989). Combining forecasts : A review and annotated bibliography.

Interna-tional journal of forecasting, 5(4) :559–583.

[Cohen, 1960] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1) :37–46.

[Congalton and Green, 2002] Congalton, R. G. and Green, K. (2002). Assessing the accuracy of remotely

sensed data : principles and practices. CRC press.

[Congalton and Mead, 1983] Congalton, R. G. and Mead, R. A. (1983). A quantitative method to test for

consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing,

49(1) :69–74.

[Coppin et al., 2004] Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., and Lambin, E. (2004). Review

ArticleDigital change detection methods in ecosystem monitoring : a review. International Journal of

Remote Sensing, 25(9) :1565–1596.

[Courty et al., 2014] Courty, N., Flamary, R., and Tuia, D. (2014). Domain adaptation with regularized

opti-mal transport. InJoint European Conference on Machine Learning and Knowledge Discovery in Databases,

pages 274–289. Springer.

[Courty et al., 2017] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017). Optimal transport

for domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9) :1853–

1865.

[Dai et al., 2008] Dai, W., Yang, Q., Xue, G.-R., and Yu, Y. (2008). Self-taught clustering. In Proceedings

of the 25th international conference on Machine learning - ICML ’08, page nil.

[Dantzig et al., 1955] Dantzig, G. B., Orden, A., Wolfe, P., et al. (1955). The generalized simplex method for

minimizing a linear form under linear inequality restraints.Pacific Journal of Mathematics, 5(2) :183–195.

[de Carvalho et al., 2013] de Carvalho, O., Guimarães, R., Silva, N., Gillespie, A., Gomes, R., Silva, C., and

de Carvalho, A. (2013). Radiometric normalization of temporal images combining automatic detection of

pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis,

and robust regression. Remote Sensing, 5(6) :2763–2794.

[Demir et al., 2010] Demir, B., Persello, C., and Bruzzone, L. (2010). Batch-mode active-learning methods

for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote

Sensing, 49(3) :1014–1031.

[Derksen et al., 2019] Derksen, D., Inglada, J., and Michel, J. (2019). A metric for evaluating the geometric

quality of land cover maps generated with contextual features from high-dimensional satellite image time

series without dense reference data. Remote Sensing, 11(16) :1929.

[Dewan and Yamaguchi, 2009] Dewan, A. M. and Yamaguchi, Y. (2009). Land use and land cover change in

greater dhaka, bangladesh : Using remote sensing to promote sustainable urbanization.Applied Geography,

29(3) :390–401.

[Di and Crawford, 2011] Di, W. and Crawford, M. M. (2011). View generation for multiview maximum

disagreement based active learning for hyperspectral image classification.IEEE Transactions on Geoscience

and Remote Sensing, 50(5) :1942–1954.

[Dogliotti et al., 2003] Dogliotti, S., Rossing, W., and Van Ittersum, M. (2003). Rotat, a tool for

systemati-cally generating crop rotations. European Journal of Agronomy, 19(2) :239–250.

[Dutrieux et al., 2015] Dutrieux, L. P., Verbesselt, J., Kooistra, L., and Herold, M. (2015). Monitoring forest

cover loss using multiple data streams, a case study of a tropical dry forest in bolivia. ISPRS Journal of

Photogrammetry and Remote Sensing, 107(nil) :112–125.

[Escofier-Cordier, 1969] Escofier-Cordier, B. (1969). L’analyse factorielle des correspondances. Cahiers du

Bureau universitaire de recherche opérationnelle Série Recherche, 13 :25–59.

[Fan et al., 2005] Fan, W., Davidson, I., Zadrozny, B., and Philip, S. Y. (2005). An improved categorization

of classifier’s sensitivity on sample selection bias. InICDM, volume 5, pages 605–608.

[Flamary and Courty, 2017] Flamary, R. and Courty, N. (2017). Pot python optimal transport library.

https://github.com/rflamary/POT.

[Flamary et al., 2015] Flamary, R., Fauvel, M., Dalla Mura, M., and Valero, S. (2015). Analysis of

multitem-poral classification techniques for forecasting image time series. Geoscience and Remote Sensing Letters,

IEEE, 12(5) :953–957.

[Foody, 1992] Foody, G. M. (1992). On the compensation for chance agreement in image classification

accu-racy assessment, photogram. Eng. Remote Sens., 58 :1459–1460.

[Franklin et al., 2015] Franklin, S. E., Ahmed, O. S., Wulder, M. A., White, J. C., Hermosilla, T., and Coops,

N. C. (2015). Large area mapping of annual land cover dynamics using multitemporal change detection

and classification of landsat time series data. Canadian Journal of Remote Sensing, 41(4) :293–314.

[Girres and Touya, 2010] Girres, J.-F. and Touya, G. (2010). Quality assessment of the french openstreetmap

dataset. Transactions in GIS, 14(4) :435–459.

[Gomez-Chova et al., 2008] Gomez-Chova, L., Camps-Valls, G., Munoz-Mari, J., and Calpe, J. (2008).

Se-misupervised image classification with laplacian support vector machines. IEEE Geoscience and Remote

Sensing Letters, 5(3) :336–340.

[Gonzalez et al., 2015] Gonzalez, D. M., Camps-Valls, G., and Tuia, D. (2015). Weakly supervised alignment

of multisensor images. In2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),

page nil.

[Hagolle et al., 2010] Hagolle, O., Huc, M., Pascual, D. V., and Dedieu, G. (2010). A multi-temporal

me-thod for cloud detection, applied to formosat-2, venµs, landsat and sentinel-2 images. Remote Sensing of

[Hansen et al., 2013] Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina,

A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice,

C. O., and Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change.

Science, 342(6160) :850–853.

[Hartigan and Wong, 1979] Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136 : A k-means clustering

algorithm. Applied Statistics, 28(1) :100.

[Hashem, 1997] Hashem, S. (1997). Optimal linear combinations of neural networks. Neural networks,

10(4) :599–614.

[Hemissi et al., 2013] Hemissi, S., Farah, I. R., Ettabaa, K. S., and Solaiman, B. (2013).

Multi-spectro-temporal analysis of hyperspectral imagery based on 3-d spectral modeling and multilinear algebra. IEEE

Transactions on Geoscience and Remote Sensing, 51(1) :199–216.

[Hilker et al., 2009] Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., Gao,

F., and White, J. C. (2009). A new data fusion model for high spatial- and temporal-resolution mapping

of forest disturbance based on landsat and modis. Remote Sensing of Environment, 113(8) :1613–1627.

[Ho et al., 1994] Ho, T. K., Hull, J. J., and Srihari, S. N. (1994). Decision combination in multiple classifier

systems. IEEE Transactions on Pattern Analysis & Machine Intelligence, (1) :66–75.

[Hotelling, 1936] Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3-4) :321–377.

[Huang et al., 2007] Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., and Smola, A. J. (2007).

Correc-ting sample selection bias by unlabeled data. InAdvances in neural information processing systems, pages

601–608.

[Igel et al., 2008] Igel, C., Heidrich-Meisner, V., and Glasmachers, T. (2008). Shark. Journal of Machine

Learning Research, 9 :993–996.

[Inamdar et al., 2008] Inamdar, S., Bovolo, F., Bruzzone, L., and Chaudhuri, S. (2008). Multidimensional

probability density function matching for preprocessing of multitemporal remote sensing images.

Geos-cience and Remote Sensing, IEEE Transactions on, 46(4) :1243–1252.

[Inglada et al., 2015] Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre,

G., Bontemps, S., Defourny, P., and Koetz, B. (2015). Assessment of an operational system for crop type

map production using high temporal and spatial resolution satellite optical imagery. Remote Sensing,

7(9) :12356.

[Inglada and Christophe, 2009] Inglada, J. and Christophe, E. (2009). The orfeo toolbox remote sensing

image processing software. In2009 IEEE International Geoscience and Remote Sensing Symposium,

vo-lume 4, pages IV–733. IEEE.

[Inglada et al., 2017] Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., and Rodes, I. (2017).

Ope-rational high resolution land cover map production at the country scale using satellite image time series.

[Inoue and Narihisa, 2002] Inoue, H. and Narihisa, H. (2002). Optimizing a multiple classifier system. In

Pacific Rim International Conference on Artificial Intelligence, pages 285–294. Springer.

[Izquierdo-Verdiguier et al., 2013] Izquierdo-Verdiguier, E., Laparra, V., Gomez-Chova, L., and Camps-Valls,

G. (2013). Encoding invariances in remote sensing image classification with svm. IEEE Geoscience and

Remote Sensing Letters, 10(5) :981–985.

[Jebara, 2004] Jebara, T. (2004). Multi-task feature and kernel selection for svms. In Proceedings of the

twenty-first international conference on Machine learning, page 55. ACM.

[Jouy and Wissocq, 2011] Jouy, L. and Wissocq, A. (2011). Observatoire des pratiques - 34 types de

succes-sions culturales en france. Accessed : 2019-08-30.

[Jun and Ghosh, 2008] Jun, G. and Ghosh, J. (2008). An efficient active learning algorithm with knowledge

transfer for hyperspectral data analysis. In IGARSS 2008 - 2008 IEEE International Geoscience and

Remote Sensing Symposium, page nil.

[Jung et al., 2006] Jung, M., Henkel, K., Herold, M., and Churkina, G. (2006). Exploiting synergies of global

land cover products for carbon cycle modeling. Remote Sensing of Environment, 101(4) :534–553.

[Kosztra et al., 2019] Kosztra, B., Buttner, G., Hazeu, G., and Arnold, S. (2019). Updated clc illustrated

nomenclature guidelines. Accessed : 2019-08-30.

[Lam and Suen, 1997] Lam, L. and Suen, S. (1997). Application of majority voting to pattern recognition :

an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics - Part

A : Systems and Humans, 27(5) :553–568.

[Landis and Koch, 1977] Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for

categorical data. biometrics, pages 159–174.

[Le Ber et al., 2006a] Le Ber, F., Benoît, M., Schott, C., Mari, J.-F., and Mignolet, C. (2006a). Studying

crop sequences with carrotage, a hmm-based data mining software. Ecological modelling, 191(1) :170–185.

[Le Ber et al., 2006b] Le Ber, F., Lieber, J., and Napoli, A. (2006b). Les systèmes à base de connaissances.

[Li and Sethi, 2006] Li, M. and Sethi, I. K. (2006). Confidence-based active learning. IEEE transactions on

pattern analysis and machine intelligence, 28(8) :1251–1261.

[Li et al., 2015] Li, X., Gong, P., and Liang, L. (2015). A 30-year (1984-2013) record of annual urban dynamics

of beijing city derived from landsat data. Remote Sensing of Environment, 166(nil) :78–90.

[Liu et al., 2007] Liu, C., Frazier, P., and Kumar, L. (2007). Comparative assessment of the measures of

thematic classification accuracy. Remote Sensing of Environment, 107(4) :606–616.

[Liu et al., 2019] Liu, S., Marinelli, D., Bruzzone, L., and Bovolo, F. (2019). A review of change detection in

multitemporal hyperspectral images : Current techniques, applications, and challenges. IEEE Geoscience

and Remote Sensing Magazine, 7(2) :140–158.

[Maclure and Willett, 1987] Maclure, M. and Willett, W. C. (1987). Misinterpretation and misuse of the

kappa statistic. American Journal of Epidemiology, 126(2) :161–169.

[Marcialis and Roli, 2003] Marcialis, G. L. and Roli, F. (2003). Fusion of face recognition algorithms for

video-based surveillance systems. InMultisensor Surveillance Systems, pages 235–249. Springer.

[Margono et al., 2012] Margono, B. A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini,

A., Goetz, S., and Hansen, M. C. (2012). Mapping and monitoring deforestation and forest degradation

in sumatra (indonesia) using landsat time series data sets from 1990 to 2010. Environmental Research

Letters, 7(3) :034010.

[Matasci et al., 2012] Matasci, G., Tuia, D., and Kanevski, M. (2012). Svm-based boosting of active learning

strategies for efficient domain adaptation. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 5(5) :1335–1343.

[Meigs et al., 2015] Meigs, G. W., Kennedy, R. E., Gray, A. N., and Gregory, M. J. (2015).

Spatiotempo-ral dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the pacific

northwest region, usa. Forest Ecology and Management, 339(nil) :71–86.

[Mihai et al., 2015] Mihai, B., Nistor, C., and Simion, G. (2015). Post-socialist urban growth of

bucha-rest, romania - a change detection analysis on landsat imagery (1984-2010). Acta geographica Slovenica,

55(2) :nil.

[Mitra et al., 2004] Mitra, P., Shankar, B. U., and Pal, S. K. (2004). Segmentation of multispectral remote

sensing images using active support vector machines. Pattern recognition letters, 25(9) :1067–1074.

[Montoya-Zegarra et al., 2013] Montoya-Zegarra, J. A., Leistner, C., and Schindler, K. (2013). Semantic tie

Documents relatifs